
Garvican, L., Clark, B., Martin, D., Schumacher, Y., Mc-
Donald, W., and Stephens, B. (2015). Impact of al-
titude on power output during cycling stage racing.
PLOS ONE, 10(12):e0143028.
Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna,
D., and van Erp, T. (2018a). Towards machine learn-
ing on data from professional cyclists. In Proceedings
of the 12th World Congress on Performance Analysis
of Sports, pages 168–176, Opatija-Croatia. Faculty of
Kinesiology, University of Zagreb.
Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna, D.,
and van Erp, T. (2018b). Towards machine learning
on data from professional cyclists. In Proceedings of
the 12th World Congress on Performance Analysis of
Sports, pages 168–176, Opatija, Croatia. Faculty of
Kinesiology, University of Zagreb.
Holmgren, J., Aspegren, S., and Dahlstr
¨
oma, J. (2017). Pre-
diction of bicycle counter data using regression. Pro-
cedia Computer Science, 113:502–507.
Jeukendrup, A. E. and Diemen, A. V. (1998). Heart rate
monitoring during training and competition in cy-
clists. Journal of sports sciences, 16 Suppl:S91–9.
Jurafsky, D. and Martin, J. H. (2009). Speech and language
processing. Prentice Hall series in artificial intelli-
gence. Prentice Hall, Pearson Education International,
2. ed., [pearson international edition] edition.
Kaiser, S. K. (2023). Predicting cycling traffic in cities:
Is bike-sharing data representative of the cycling vol-
ume? In ICLR 2023 Workshop on Tackling Climate
Change with Machine Learning.
Kapousizis, G., Ulak, M., Geurs, K., and Havinga, P.
(2022). A review of state-of-the-art bicycle technolo-
gies affecting cycling safety: level of smartness and
technology readiness. Transport Reviews, 43:1–23.
Kataoka, Y. and Gray, P. (2019). Real-time power perfor-
mance prediction in tour de france. In Brefeld, U.,
Davis, J., Van Haaren, J., and Zimmermann, A., edi-
tors, Machine Learning and Data Mining for Sports
Analytics, pages 121–130, Cham. Springer Interna-
tional Publishing.
Lewis, N. A., Towey, C., Bruinvels, G., Howatson, G., and
Pedlar, C. R. (2016). Clustering classification of cy-
clists according to the acute fatigue outcomes pro-
duced by an ultra-endurance event. European Journal
of Human Movement.
Martinez-Noguera, F., Alcaraz, P., Ortolano-R
´
ıos, R., Du-
four, S., and Mar
´
ın-Pag
´
an, C. (2021). Differences
between professional and amateur cyclists in endoge-
nous antioxidant system profile. Antioxidants, 10:282.
Mart
´
ınez-Cevallos, D., Proa
˜
no-Grijalva, A., Alguacil, M.,
Duclos-Bast
´
ıas, D., and Parra-Camacho, D. (2020).
Segmentation of participants in a sports event using
cluster analysis. Sustainability, 12(14).
Mazzoleni, M., Battaglini, C., Martin, K., et al. (2016).
Modeling and predicting heart rate dynamics across
a broad range of transient exercise intensities during
cycling. Sports Engineering, 19(2):117–127.
Mirizio, G. G., Mu
˜
noz, R., Mu
˜
noz, L., Ahumada, F., and
Del Coso, J. (2021a). Race performance prediction
from the physiological profile in national level youth
cross-country cyclists. International Journal of Envi-
ronmental Research and Public Health, 18:5535.
Mirizio, G. G., Mu
˜
noz, R., Mu
˜
noz, L., Ahumada, F., and
Del Coso, J. (2021b). Race performance prediction
from the physiological profile in national level youth
cross-country cyclists. International Journal of Envi-
ronmental Research and Public Health, 18:5535.
Mrakic, S., Gussoni, M., Moretti, S., Pratali, L., Giardini,
G., Tacchini, P., Dellanoce, C., Tonacci, A., Mastorci,
F., Borghini, A., Montorsi, M., and Vezzoli, A. (2015).
Effects of mountain ultra-marathon running on ros
production and oxidative damage by micro-invasive
analytic techniques. PLoS ONE, 10(11):e0141780.
Murillo Burford, E. (2020). Predicting cycling performance
using machine learning. Master’s thesis, Wake For-
est University Graduate School of Arts and Sciences,
Winston-Salem, North Carolina. A Thesis Submitted
in Partial Fulfillment of the Requirements for the De-
gree of Master of Science in Computer Science.
Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clus-
tering: Analysis and an algorithm. In Dietterich, T.,
Becker, S., and Ghahramani, Z., editors, Advances in
Neural Information Processing Systems, volume 14.
MIT Press.
Ørtenblad, N., Westerblad, H., and Nielsen, J. (2013). Mus-
cle glycogen stores and fatigue. The Journal of Phys-
iology, 591(18):4405–4413.
Pardo Albiach, J., Mir-Jimenez, M., Hueso Moreno, V.,
N
´
acher Molt
´
o, I., and Mart
´
ınez-Gramage, J. (2021).
The relationship between vo2max, power manage-
ment, and increased running speed: Towards gait pat-
tern recognition through clustering analysis. Sensors,
21(7).
Phillips, K. and Hopkins, W. (2020). Determinants of cy-
cling performance: a review of the dimensions and
features regulating performance in elite cycling com-
petitions. Sports Medicine - Open, 6.
Priego, J. I., Kerr, Z. Y., Bertucci, W. M., and Carpes, F. P.
(2018). The categorization of amateur cyclists as re-
search participants: Findings from an observational
study. Journal of Sports Sciences, 36(17):2018–2024.
Schnohr, P., O’Keefe, J. H., Marott, J. L., Lange, P., Jensen,
G. B., Riegger, G. A., Allard, N. A., and Green, C. A.
(2006). Intensity versus duration of cycling, impact
on all-cause and coronary heart disease mortality: the
copenhagen city heart study. European Journal of
Preventive Cardiology, 9(5):924–930.
Thiel, D. and Sarkar, A. (2014). Swing profiles in sport:
An accelerometer analysis. Procedia Engineering,
72:624–629.
van Bon, M. and Vroemen, G. (2019). Power speed profile:
Performance model for road cycling.
van der Zwaard, S., de Ruiter, C. J., Jaspers, R. T., and
de Koning, J. J. (2019). Anthropometric clusters of
competitive cyclists and their sprint and endurance
performance. Frontiers in Physiology, 10.
Yang, X.-S. (2014). Chapter 14 - multi-objective optimiza-
tion. In Yang, X.-S., editor, Nature-Inspired Optimiza-
tion Algorithms, pages 197–211. Elsevier, Oxford.
Zhang, R., Te Br
¨
ommelstroet, M., Nikolaeva, A., and Liu,
G. (2024). Cycling subjective experience: A concep-
tual framework and methods review. Transportation
Research Part F: Traffic Psychology and Behaviour,
101:142–159.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
468