
REFERENCES
Arnell, N. W. et al. (2019). Global and regional impacts of
climate change at different levels of global tempera-
ture increase. Global Environmental Change, 58:101–
113.
Berglund, E. Z., Shafiee, M. E., Xing, L., and Wen, J.
(2023). Digital twins for water distribution systems.
Journal of Water Resources Planning and Manage-
ment, 149(3):02523001.
Bergmeir, C., Hyndman, R. J., and Koo, B. (2018). A
note on the validity of cross-validation for evaluating
autoregressive time series prediction. Computational
Statistics & Data Analysis, 120:70–83.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung,
G. M. (2015). Time Series Analysis: Forecasting and
Control. Wiley, Hoboken, NJ, 5th edition.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 785–794.
ACM.
Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A.,
and Veeramachaneni, K. (2020). Tadgan: Time series
anomaly detection using generative adversarial net-
works. In IEEE Int’l. Conf. on Big Data (Big Data
’20’), pages 33–43. IEEE.
Gonz
´
alez-Herb
´
on, R., Gonz
´
alez-Mateos, G., Rodr
´
ıguez-
Ossorio, J., Prada, M., Mor
´
an, A., Alonso, S., Fuertes,
J., and Dom
´
ınguez, M. (2025). Assessment and de-
ployment of a lstm-based virtual sensor in an indus-
trial process control loop. Neural Computing and Ap-
plications, 37(17):10507–10519.
Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Con-
cepts and Techniques. Elsevier, Burlington, MA, 3rd
edition.
Han, Z., Zhao, J., Leung, H., Ma, K.-F., and Wang, W.
(2021). A review of deep learning models for time
series prediction. IEEE Sensors Journal, 21(6):7833–
7848.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Hyndman, R. J. and Koehler, A. B. (2006). Another look at
measures of forecast accuracy. International Journal
of Forecasting, 22(4):679–688.
Ibrahim, T., Omar, Y., and Maghraby, F. A. (2020). Wa-
ter demand forecasting using machine learning and
time series algorithms. In 2020 International Confer-
ence on Emerging Smart Computing and Informatics
(ESCI), pages 325–329. IEEE.
Kadlec, P., Gabrys, B., and Strandt, S. (2009). Data-driven
soft sensors in the process industry. Computers &
Chemical Engineering, 33(4):795–814.
Karniadakis, G. E. et al. (2021). Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440.
Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A.,
Patted, A., Basavaiah, J., and Anthony, A. A. (2022).
Iot based smart water quality monitoring system. Ma-
terials Today: Proceedings, 51:1283–1287.
Makridakis, S., Spiliotis, E., and Assimakopoulos, V.
(2018). Statistical and machine learning forecasting
methods: Concerns and ways forward. PLoS ONE,
13(3):e0194889.
Marcjasz, G., Narajewski, M., Weron, R., and Ziel, F.
(2023). Distributional neural networks for electricity
price forecasting. Energy Economics, 125:106843.
Martin, D., K
¨
uhl, N., and Satzger, G. (2021). Virtual sen-
sors. Business & Information Systems Engineering,
63:315–323.
Psichogios, D. and Ungar, L. (1992). A hybrid neural
network-first principles approach to process model-
ing. AIChE Journal, 38(10):1499–1511.
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
Processes for Machine Learning. MIT Press.
Shen, Y. et al. (2022). Digital twins for smart water manage-
ment: Framework and case studies. Water Research,
218:118449.
Smith, K. E. and Smith, A. O. (2020). Conditional
gan for timeseries generation. arXiv preprint
arXiv:2006.16477.
Weichert, D. et al. (2019). A review of machine learning
for the optimization of production processes. Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 104(9–12):3663–3682.
Zahedi, F., Alavi, H., Majrouhi Sardroud, J., and Dang, H.
(2024). Digital twins in the sustainable construction
industry. Buildings, 14(11):3613.
Zekri, S., Jabeur, N., and Gharrad, H. (2022). Smart water
management using intelligent digital twins. Comput-
ing and Informatics, 41(1):135–153.
Zhao, Z., Chen, W., Wu, X., Chen, P., Liu, J., Chen, J.,
and Deng, S. (2022). Deep learning for time series
forecasting: A survey. Artificial Intelligence Review,
55:4099–4139.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
460