
Ibrahim, Z. A. A., Saab, M., and Sbeity, I. (2019).
Videotovecs: a new video representation based on
deep learning techniques for video classification and
clustering. SN applied sciences, 1(6):560.
Iyengar, G. and Lippman, A. B. (1997). Models for au-
tomatic classification of video sequences. In Storage
and Retrieval for Image and Video Databases VI, vol-
ume 3312, pages 216–227. SPIE.
Jia, W., Sun, M., Lian, J., and Hou, S. (2022). Feature
dimensionality reduction: a review. Complex & Intel-
ligent Systems, 8(3):2663–2693.
Karpathy, A. et al. (2016). Cs231n convolutional neural
networks for visual recognition. Neural networks, 1.
Kluver, D., Ekstrand, M. D., and Konstan, J. A. (2018).
Rating-based collaborative filtering: algorithms and
evaluation. Social information access: Systems and
technologies, pages 344–390.
Li, F., Gan, C., Liu, X., Bian, Y., Long, X., Li, Y., Li, Z.,
Zhou, J., and Wen, S. (2017). Temporal modeling
approaches for large-scale youtube-8m video under-
standing. arXiv preprint arXiv:1707.04555.
Liu, H., Tu, J., and Liu, M. (2017). Two-stream 3d convolu-
tional neural network for skeleton-based action recog-
nition. arXiv preprint arXiv:1705.08106.
Mao, M., Lee, A., and Hong, M. (2024). Deep learn-
ing innovations in video classification: A survey
on techniques and dataset evaluations. Electronics,
13(14):2732.
Mouhiha, M., Oualhaj, O. A., and Mabrouk, A. (2024). En-
hancing movie recommendations: A deep neural net-
work approach with movielens case study. In 2024
International Wireless Communications and Mobile
Computing (IWCMC), pages 1303–1308. IEEE.
Ong, K.-M. and Kameyama, W. (2009). Classification of
video shots based on human affect. The Journal of
The Institute of Image Information and Television En-
gineers, 63(6):847–856.
Orchard, M. T. (1991). Exploiting scene structure in video
coding. In Conference Record of the Twenty-Fifth
Asilomar Conference on Signals, Systems & Comput-
ers, pages 456–457. IEEE Computer Society.
Otani, M., Nakashima, Y., Rahtu, E., Heikkil
¨
a, J., and
Yokoya, N. (2017). Video summarization using deep
semantic features. In Computer Vision–ACCV 2016:
13th Asian Conference on Computer Vision, Taipei,
Taiwan, November 20-24, 2016, Revised Selected Pa-
pers, Part V 13, pages 361–377. Springer.
Pazzani, M. (2007). Content-based recommendation sys-
tems.
Puls, E. d. S., Todescato, M. V., and Carbonera, J. L.
(2023). An evaluation of pre-trained models for fea-
ture extraction in image classification. arXiv preprint
arXiv:2310.02037.
Rehman, A. and Belhaouari, S. B. (2023). Deep learning for
video classification: A review. Authorea Preprints.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61:85–117.
Sharma, V., Gupta, M., Kumar, A., and Mishra, D. (2021).
Video processing using deep learning techniques: A
systematic literature review. IEEE Access, 9:139489–
139507.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sompairac, N., Nazarov, P. V., Czerwinska, U., Cantini, L.,
Biton, A., Molkenov, A., Zhumadilov, Z., Barillot, E.,
Radvanyi, F., Gorban, A., et al. (2019). Independent
component analysis for unraveling the complexity of
cancer omics datasets. International Journal of molec-
ular sciences, 20(18):4414.
Tokala, S., Nagaram, J., Enduri, M. K., and Lakshmi, T. J.
(2024). Enhanced movie recommender system using
deep learning techniques. In 2024 3rd International
Conference on Computational Modelling, Simulation
and Optimization (ICCMSO), pages 71–75. IEEE.
Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri,
M. (2015). Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages
4489–4497.
Truong, B. T. and Venkatesh, S. (2007). Video abstraction:
A systematic review and classification. ACM transac-
tions on multimedia computing, communications, and
applications (TOMM), 3(1):3–es.
Ur Rehman, A., Belhaouari, S. B., Kabir, M. A., and Khan,
A. (2023). On the use of deep learning for video clas-
sification. Applied Sciences, 13(3):2007.
Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., and
Yan, S. (2014). Cnn: Single-label to multi-label. arXiv
preprint arXiv:1406.5726.
Wen, J., Fang, X., Cui, J., Fei, L., Yan, K., Chen, Y., and Xu,
Y. (2018). Robust sparse linear discriminant analysis.
IEEE Transactions on Circuits and Systems for Video
Technology, 29(2):390–403.
Xu, L.-Q. and Li, Y. (2003). Video classification using
spatial-temporal features and pca. In 2003 Interna-
tional Conference on Multimedia and Expo. ICME’03.
Proceedings (Cat. No. 03TH8698), volume 3, pages
III–485. IEEE.
Zha, S., Luisier, F., Andrews, W., Srivastava, N., and
Salakhutdinov, R. (2015). Exploiting image-trained
cnn architectures for unconstrained video classifica-
tion. arXiv preprint arXiv:1503.04144.
Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep
learning based recommender system: A survey and
new perspectives. ACM Computing Surveys (CSUR),
52(1):5.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
276