
is not our first language. The authors take full respon-
sibility for the content and its technical accuracy.
REFERENCES
Adesina, M. T. and Howe, L. (2024). Social media
(youtube) political sentiment multi-label analysis. In-
ternational Journal of Science and Research Archive,
12(02):2063–2071.
Barbieri, F., Camacho-Collados, J., Espinosa-Anke, L., and
Ronzano, F. (2020). Tweeteval: Unified benchmark
and comparative evaluation for tweet classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 1644–1650.
Barbieri, F., Espinosa Anke, L., and Camacho-Collados,
J. (2022). XLM-T: Multilingual language models in
Twitter for sentiment analysis and beyond. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 258–266.
Bindhumol, M., Singh, T., and Patra, P. (2024). Sentiment
analysis using youtube comments. In 2024 15th Inter-
national Conference on Computing Communication
and Networking Technologies (ICCCNT), pages 1–7.
Bonetti, A., Mart
´
ınez-Sober, M., Torres, J. C., Vega, J. M.,
Pellerin, S., and Vila-Franc
´
es, J. (2023). Compari-
son between machine learning and deep learning ap-
proaches for the detection of toxic comments on social
networks. Applied Sciences, 13(10).
Campan, A. and Holtke, N. (2024). Beyond twitter: Explor-
ing alternative api sources for social media analytics.
In Proceedings of the 16th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management (IC3K 2024), Vol.1,
pages 441–447.
Dharini, N., Madhuvanthi, M., Aswini, C. S., Lakshya, R.,
Triumbika, M., and Saranya, N. (2025). Ensemble-
driven multilingual sentiment analysis framework for
youtube comments with dashboard. In 2025 Interna-
tional Conference on Visual Analytics and Data Visu-
alization (ICVADV), pages 1524–1529.
Fortuna, P., Soler-Company, J., and Wanner, L. (2021).
How well do hate speech, toxicity, abusive and offen-
sive language classification models generalize across
datasets? Information Processing & Management,
58(3):102524.
Guzman, J. P. S., Cheng, C. K., Bernadas, J. M. A. C., and
Lao, A. R. (2025). Aspect-level sentiment analysis of
filipino tweets during the covid-19 pandemic. In Pro-
ceedings of the 18th International Joint Conference
on Biomedical Engineering Systems and Technologies
(BIOSTEC 2025) - Vol.2, pages 343–350.
Hanu, L. and Unitary team (2020). Detoxify. Github.
https://github.com/unitaryai/detoxify.
Kamma, V., Wbaid, S., K, S., A, N., and Saravanan, T.
(2025). Toxic comment detection based on improved
bi directional long short term memory. In 2025 Inter-
national Conference on Intelligent Systems and Com-
putational Networks (ICISCN), pages 1–6.
Kurtz, G. B., de P. Carraro, S., Teixeira, C. R. G., Bandeira,
L. D., M
¨
uller, B. L., Tietzmann, R., Silveira, M. S.,
and Manssour, I. H. (2025). Streamvis: An analy-
sis platform for youtube live chat audience interaction,
trends and controversial topics. In Proceedings of the
27th International Conference on Enterprise Informa-
tion Systems (ICEIS 2025) - Vol.2, pages 630–640.
Leite, J. A., Silva, D., Bontcheva, K., and Scarton, C.
(2020). Toxic language detection in social media for
Brazilian Portuguese: New dataset and multilingual
analysis. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
914–924.
Maity, A., More, R., Patil, P. A., Oza, J., and Kambli, G.
(2024). Toxic comment detection using bidirectional
sequence classifiers. In 2024 2nd International Con-
ference on Intelligent Data Communication Technolo-
gies and Internet of Things (IDCIoT), pages 709–716.
Muneer, Q. and Khan, M. A. (2025). Role of youtube in
creating awareness of sustainable transportation: A
latent dirichlet allocation approach. Sustainable Fu-
tures, 9:100607.
Parraga-Alava, J., Rodas-Silva, J., Quimi, I., and Alcivar-
Cevallos, R. (2021). Opinion and sentiment analy-
sis of twitter users during the 2021 ecuador presiden-
tial election. In Proceedings of the 17th International
Conference on Web Information Systems and Tech-
nologies (WEBIST 2021), pages 257–266.
Schmidt, S., Zorenb
¨
ohmer, C., Arifi, D., and Resch, B.
(2023). Polarity-based sentiment analysis of georef-
erenced tweets related to the 2022 twitter acquisition.
Information, 14(2):71.
Shahi, G. K. and Majchrzak, T. A. (2025). Hate speech de-
tection using cross-platform social media data in en-
glish and german language. In Proceedings of the 20th
International Conference on Web Information Systems
and Technologies (WEBIST 2024), pages 131–140.
Siegel, A. A. (2020). Online Hate Speech, pages 56–88.
SSRC Anxieties of Democracy. Cambridge University
Press, Cambridge.
Vargas, D. S., Pessutto, L. R. C., and Moreira, V. P. (2022).
Unsupervised aspect term extraction for sentiment
analysis through automatic labeling. In Proceedings
of the 18th International Conference on Web Informa-
tion Systems and Technologies (WEBIST 2022), pages
344–354.
Yadollahi, A., Shahraki, A. G., and Zaiane, O. R. (2022).
Deep learning in sentiment analysis: Recent architec-
tures and trends. ACM Computing Surveys, 54(2):1–
36.
Zhang, W., Deng, Y., Liu, B., Pan, S. J., and Bing, L. (2024).
Sentiment analysis in the era of large language mod-
els: A reality check. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
3883–3906.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
488