
Program of Academic Excellence (PROEX) for the
financial support provided through the scholarship
grant. We are also grateful to the Driver Training Cen-
ter Auto Escola Mil
ˆ
enio, where the experiments were
conducted, and to psychologist Juliana Daga for her
continuous support and involvement throughout the
development and implementation of the project.
REFERENCES
Alhaek, F., Liang, W., Rajeh, T. M., Javed, M. H., and Li,
T. (2024). Learning spatial patterns and temporal de-
pendencies for traffic accident severity prediction: A
deep learning approach. Knowledge-Based Systems,
286:111406.
Barka, R. E. and Politis, I. (2024). Driving into the future: A
scoping review of smartwatch use for real-time driver
monitoring. Transportation research interdisciplinary
perspectives, 25:101098.
Braun, M., Schubert, J., Pfleging, B., and Alt, F. (2019).
Improving driver emotions with affective strategies.
Multimodal Technologies and Interaction, 3(1):21.
Catai, A. M., Pastre, C. M., de Godoy, M. F., da Silva, E.,
de Medeiros Takahashi, A. C., and Vanderlei, L. C. M.
(2020). Heart rate variability: are you using it prop-
erly? standardisation checklist of procedures. Brazil-
ian journal of physical therapy, 24(2):91–102.
Craske, M. G., Kircanski, K., and Vervliet, B. (2009). Fear
of driving: Epidemiology, diagnosis, and treatment.
Oxford University Press.
Grubert, J., Kranz, M., and Quigley, A. (2016). Challenges
in mobile multi-device ecosystems. mUX—The Jour-
nal of Mobile User Experience, 5(1):1–17.
Haque, Y., Zawad, R. S., Rony, C. S. A., Al Banna, H.,
Ghosh, T., Kaiser, M. S., and Mahmud, M. (2024).
State-of-the-art of stress prediction from heart rate
variability using artificial intelligence. Cognitive
Computation, 16(2):455–481.
Iqbal, T., Simpkin, A. J., Roshan, D., Glynn, N., et al.
(2022). Stress monitoring using wearable sensors:
A pilot study and Stress-Predict dataset. Sensors,
22(21):8135.
Lee, M., Lee, S., Hwang, S., Lim, S., and Yang, J. H.
(2023). Effect of emotion on galvanic skin response
and vehicle control data during simulated driving.
Transportation research part F: traffic psychology and
behaviour, 93:90–105.
Leyro, T. M., Versella, M. V., Yang, M.-J., Brinkman,
H. R., Hoyt, D. L., and Lehrer, P. (2021). Respiratory
therapy for the treatment of anxiety: Meta-analytic
review and regression. Clinical psychology review,
84:101980.
Li, W., Zhang, B., Wang, P., Sun, C., Zeng, G., Tang,
Q., Guo, G., and Cao, D. (2021). Visual-attribute-
based emotion regulation of angry driving behaviors.
IEEE Intelligent Transportation Systems Magazine,
14(3):10–28.
Lin, W. and Li, C. (2023). Review of studies on emotion
recognition and judgment based on physiological sig-
nals. Applied Sciences, 13(4):2573.
Liu, K., Jiao, Y., Du, C., et al. (2023). Driver stress detec-
tion using ultra-short-term HRV analysis under real-
world driving conditions. Entropy, 25(2):194.
Marceglia, S., Fontelo, P., Rossi, E., and Ackerman,
M. J. (2015). A standards-based architecture pro-
posal for integrating patient mhealth apps to electronic
health record systems. Applied Clinical Informatics,
6(3):488–505.
Marquart, G., Cabrall, C., and De Winter, J. (2015). Review
of eye-related measures of drivers’ mental workload.
Procedia Manufacturing, 3:2854–2861.
Minist
´
erio dos Transportes (2023). Painel es-
tat
´
ıstico de acidentes de tr
ˆ
ansito. https:
//www.gov.br/transportes/pt-br/assuntos/transito/
arquivos-senatran/docs/renaest. Acessado em
11/11/2023.
Ortoncelli, A. R., Silva, L., Bellon, O. R. P., de Oliveira,
T. M., and Daga, J. (2020). Summarizing driving be-
havior to support driver stress analysis. In 2020 15th
IEEE International Conference on Automatic Face
and Gesture Recognition (FG 2020), pages 587–591.
IEEE.
Perez, M. d. l. C. and Ruiz, J. A. (2024). Detection and
monitoring of stress using wearables: A systematic
review. Frontiers in Computer Science, 6:1478851.
Pinge, A., Gad, V., Jaisighani, D., Ghosh, S., and Sen,
S. (2024). Detection and monitoring of stress using
wearables: a systematic review. Frontiers in Com-
puter Science, 6:1478851.
Stephens, A., Collette, B., Hidalgo-Munoz, A., Fort, A.,
Evennou, M., and Jallais, C. (2024). Help-seeking for
driving anxiety: who seeks help and how beneficial is
this perceived to be? Transportation research part F:
traffic psychology and behaviour, 105:182–195.
Vansteenwegen, A., Verhaeghe, S., Clercq, C., and Kir-
canski, K. (2014). The impact of driving anxiety on
mobility, quality of life and socio-economic participa-
tion: A systematic review. Clinical Psychology Re-
view, 34(8):673–688.
WHO (2023). Global status report on road safety
2023. http://www.abeetrans.com.br/abeetrans/?p=
4213. Acessado em 20/11/2023.
Xu, G., Qin, R., Zheng, Z., and Shi, Y. (2024).
An adaptive system for wearable devices to detect
stress using physiological signals. arXiv preprint
arXiv:2407.15252.
Zhao, Q., Yang, L., and Lyu, N. (2024). A driver stress
detection model via data augmentation based on deep
convolutional recurrent neural network. Expert Sys-
tems with Applications, 238:122056.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
552