
New York, NY, USA. Association for Computing Ma-
chinery.
Cravero, A. and Sep
´
ulveda, S. (2021). Use and adaptations
of machine learning in big data—applications in real
cases in agriculture. Electronics, 10:552.
Gaff, B. M. and Dombrowski, J. M. (2013). Ten things to
know about applying for non-us patents. Computer,
46(8):9–11.
Gekhman, Z., Yona, G., Aharoni, R., Eyal, M., Feder, A.,
Reichart, R., and Herzig, J. (2024). Does fine-tuning
llms on new knowledge encourage hallucinations?
Guha, R., McCool, R., and Miller, E. (2003). Seman-
tic search. In Proceedings of the 12th International
Conference on World Wide Web, WWW ’03, page
700–709, New York, NY, USA. Association for Com-
puting Machinery.
Guo, R., Kumar, S., Choromanski, K., and Simcha, D.
(2016). Quantization based fast inner product search.
In Artificial intelligence and statistics, pages 482–490.
PMLR.
Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang,
H., Chen, Q., Peng, W., Feng, X., Qin, B., and Liu, T.
(2023). A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions.
Krishna, S., Krishna, K., Mohananey, A., Schwarcz, S.,
Stambler, A., Upadhyay, S., and Faruqui, M. (2024).
Fact, fetch, and reason: A unified evaluation of
retrieval-augmented generation.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., tau
Yih, W., Rockt
¨
aschel, T., Riedel, S., and Kiela,
D. (2021). Retrieval-augmented generation for
knowledge-intensive nlp tasks.
Maranguni
´
c, N. and Grani
´
c, A. (2015). Technology accep-
tance model: a literature review from 1986 to 2013.
Univers. Access Inf. Soc., 14(1):81–95.
Misirlis, N. and Munawar, H. B. (2023). An analysis of the
technology acceptance model in understanding uni-
versity students behavioral intention to use metaverse
technologies.
Naz, A., Prasad, P., McCall, S., CHAN, C. L., Ochi, I.,
Gong, L., and Yu, M. (2024). Privacy-preserving ab-
normal gait detection using computer vision and ma-
chine learning.
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I.,
Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian,
M., Belgum, J., Bello, I., and et al., J. B. (2024). Gpt-4
technical report.
Pandey, N. P., Fournarakis, M., Patel, C., and Nagel, M.
(2023a). Softmax bias correction for quantized gener-
ative models. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV)
Workshops, pages 1453–1458.
Pandey, N. P., Kulkarni, S., Wang, D., Gungor, O., Ponzina,
F., and Rosing, T. (2025). Dpq-hd: Post-training com-
pression for ultra-low power hyperdimensional com-
puting.
Pandey, N. P., Nagel, M., van Baalen, M., Huang, Y., Patel,
C., and Blankevoort, T. (2023b). A practical mixed
precision algorithm for post-training quantization.
Raghupathi, V., Zhou, Y., and Raghupathi, W. (2018). Le-
gal decision support: Exploring big data analytics
approach to modeling pharma patent validity cases.
IEEE Access, 6:41518–41528.
Rahutomo, F., Kitasuka, T., Aritsugi, M., et al. (2012). Se-
mantic cosine similarity. In The 7th international stu-
dent conference on advanced science and technology
ICAST, volume 4, page 1. University of Seoul South
Korea.
Shokrollahi, Y., Yarmohammadtoosky, S., Nikahd, M. M.,
Dong, P., Li, X., and Gu, L. (2023). A comprehensive
review of generative ai in healthcare.
Th
¨
us, D., Malone, S., and Br
¨
unken, R. (2024). Explor-
ing generative ai in higher education: a rag system to
enhance student engagement with scientific literature.
Frontiers in Psychology, 15.
Verma, S., Tran, K., Ali, Y., and Min, G. (2023). Reducing
llm hallucinations using epistemic neural networks.
Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang,
X., Guo, X., Li, C., Xu, X., Yu, K., Yuan, Y., Zou,
Y., Long, J., Cai, Y., Li, Z., Zhang, Z., Mo, Y., Gu,
J., Jiang, R., Wei, Y., and Xie, C. (2021). Mil-
vus: A purpose-built vector data management sys-
tem. In Proceedings of the 2021 International Con-
ference on Management of Data, SIGMOD ’21, page
2614–2627, New York, NY, USA. Association for
Computing Machinery.
Xu, Z., Jain, S., and Kankanhalli, M. (2024). Hallucination
is inevitable: An innate limitation of large language
models.
JURISMIND: Context-Driven Retrieval for Accurate and Relevant Legal Question-Answering in Patent Filings
329