
under four operating conditions demonstrated that
the extracted features effectively discriminate normal,
faulty, and imbalance states. A Random Forest clas-
sifier trained on these features achieved 96.7% accu-
racy and a macro-averaged F1-score of 0.965, under-
scoring the method’s robustness. Nevertheless, future
work will extend this framework to diverse machin-
ery types and fault scenarios, and explore real-time
processing for continuous industrial monitoring.
ACKNOWLEDGEMENTS
This work is funded by the Japan International Coop-
eration Agency (JICA) Program, Egypt – Grant Num-
ber (TB1-25-4: ”Contactless Predictive Maintenance
for Rotating Equipment: An AI and Vision-Based
Approach”).
REFERENCES
de Koning, M., Machado, T., Ahonen, A., Strokina, N., Di-
anatfar, M., De Rosa, F., Minav, T., and Ghabcheloo,
R. (2024). A comprehensive approach to safety for
highly automated off-road machinery under regulation
2023/1230. Safety Science, 175:106517.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88:303–338.
Gunt (2025a). Pt 500 machinery diagnostic system, base
unit.
Gunt (2025b). Tm 170 balancing apparatus.
Kalaiselvi, S., Sujatha, L., and Sundar, R. (2018). Fabri-
cation of mems accelerometer for vibration sensing in
gas turbine. In 2018 IEEE SENSORS, pages 1–4.
Ke, J., Wang, Q., Wang, Y., Milanfar, P., and Yang, F.
(2021). Musiq: Multi-scale image quality transformer.
In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 5148–5157.
Kiranyaz, S., Devecioglu, O. C., Alhams, A., Sassi, S.,
Ince, T., Avci, O., and Gabbouj, M. (2024). Exploring
sound vs vibration for robust fault detection on rotat-
ing machinery. IEEE Sensors Journal.
Lado-Roig
´
e, R., Font-Mor
´
e, J., and P
´
erez, M. A. (2023).
Learning-based video motion magnification approach
for vibration-based damage detection. Measurement:
Journal of the International Measurement Confedera-
tion, 206.
Lado-Roig
´
e, R. and P
´
erez, M. A. (2023). Stb-vmm:
Swin transformer based video motion magnification.
Knowledge-Based Systems, 269:110493.
Li, H., Sun, Y., Adumene, S., Goleiji, E., and Yazdi,
M. (2025). Machinery safety improvement in
manufacturing-oriented facilities: a strategic frame-
work. The International Journal of Advanced Man-
ufacturing Technology, pages 1–30.
Lima, J. A., Miosso, C. J., and Farias, M. C. (2025). Syn-
flowmap: A synchronized optical flow remapping for
video motion magnification. Signal Processing: Im-
age Communication, 130:117203.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter vision–ECCV 2014: 13th European conference,
zurich, Switzerland, September 6-12, 2014, proceed-
ings, part v 13, pages 740–755. Springer.
Nieto, J. J. (2025). Digital twins, history, metrics and future
directions. Mechatronics Technology, 2(1).
Oh, T.-H., Jaroensri, R., Kim, C., Elgharib, M., Durand, F.,
Freeman, W. T., and Matusik, W. (2018). Learning-
based video motion magnification. In Proceedings of
the European conference on computer vision (ECCV),
pages 633–648.
Song, Y., Zhuang, Y., Wang, D., Li, Y., and Zhang, Y.
(2025). Fault diagnosis in rolling bearings using
multi-gaussian attention and covariance loss for single
domain generalization. IEEE Transactions on Instru-
mentation and Measurement.
Wadhwa, N., Rubinstein, M., Durand, F., and Freeman,
W. T. (2013). Phase-based video motion processing.
ACM Transactions on Graphics (ToG), 32(4):1–10.
Wadhwa, N., Rubinstein, M., Durand, F., and Freeman,
W. T. (2014). Riesz pyramids for fast phase-based
video magnification. In 2014 IEEE International
Conference on Computational Photography (ICCP),
pages 1–10. IEEE.
Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F.,
and Freeman, W. (2012). Eulerian video magnifica-
tion for revealing subtle changes in the world. ACM
transactions on graphics (TOG), 31(4):1–8.
Xu, X. and Lu, Y. (2025). Acoustic modal analysis method
for helicopter acoustic scattering. AIAA Journal,
pages 1–21.
Yang, Y. and Jiang, Q. (2024). A novel phase-based video
motion magnification method for non-contact mea-
surement of micro-amplitude vibration. Mechanical
Systems and Signal Processing, 215.
Zang, Z., Yang, X., Zhang, G., Li, S., and Chen, J. (2025).
Video-based subtle vibration measurement in the pres-
ence of large motions. Measurement, 240:115559.
Zhang, G., Hou, J., Wan, C., Li, J., Xie, L., and Xue,
S. (2025). Non-contact vision-based response recon-
struction and reinforcement learning guided evolu-
tionary algorithm for substructural condition assess-
ment. Mechanical Systems and Signal Processing,
224:112017.
Zhao, H., Zhang, X., Jiang, D., and Gu, J. (2023). Research
on rotating machinery fault diagnosis based on an im-
proved eulerian video motion magnification. Sensors
2023, Vol. 23, Page 9582, 23:9582.
Zhong, S., Jin, G., Chen, Y., Ye, T., and Zhou, T. (2025).
Review of vibration analysis and structural optimiza-
tion research for rotating blades. Journal of Marine
Science and Application, 24(1):120–136.
´
Smieja, M., Mamala, J., Pra
˙
znowski, K., Ciepli
´
nski, T.,
and Łukasz Szumilas (2021). Motion magnification
of vibration image in estimation of technical object
condition-review. Sensors, 21.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
452