
of garch models with support vector regression. Ener-
gies, 14(1):6.
Franses, P. H. and Dijk, D. V. (1996). Forecasting stock
market volatility using (non-linear) garch models.
Journal of Forecasting, 15(3):229–235.
Keerthi, S. S. and Lin, C.-J. (2003). Asymptotic behaviors
of support vector machines with gaussian kernel. Neu-
ral Computation, 15(7):1667–1689.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nature, 521(7553):436–444.
Livieris, I. E., Kanavos, A., Vonitsanos, G., Kiriakidou, N.,
Vikatos, A., Giotopoulos, K. C., and Tampakas, V.
(2018). Performance evaluation of an SSL algorithm
for forecasting the dow jones index stocks. In 9th In-
ternational Conference on Information, Intelligence,
Systems and Applications (IISA), pages 1–8. IEEE.
Livieris, I. E., Pintelas, E., Stavroyiannis, S., and Pinte-
las, P. E. (2020). Ensemble deep learning models for
forecasting cryptocurrency time-series. Algorithms,
13(5):121.
Narayanan, A., Bonneau, J., Felten, E. W., Miller, A., and
Goldfeder, S. (2016). Bitcoin and Cryptocurrency
Technologies - A Comprehensive Introduction. Prince-
ton University Press.
Petric
˘
a, A.-C., Stancu, S., and Tindeche, A. (2016). Limi-
tation of arima models in financial and monetary eco-
nomics. Theoretical & Applied Economics, 23(4).
Pintelas, E., Livieris, I. E., Stavroyiannis, S., Kotsilieris, T.,
and Pintelas, P. E. (2020). Investigating the problem
of cryptocurrency price prediction: A deep learning
approach. In 16th IFIP WG 12.5 International Con-
ference on Artificial Intelligence Applications and In-
novations (AIAI), volume 584 of IFIP Advances in In-
formation and Communication Technology, pages 99–
110. Springer.
Pisner, D. A. and Schnyer, D. M. (2020). Support vector
machine. In Machine Learning, pages 101–121. Else-
vier.
Saravanos, C. and Kanavos, A. (2023a). Forecasting stock
market alternations using social media sentiment anal-
ysis and deep neural networks. In 14th International
Conference on Information, Intelligence, Systems &
Applications (IISA), pages 1–8. IEEE.
Saravanos, C. and Kanavos, A. (2023b). Forecasting stock
market alternations using social media sentiment anal-
ysis and regression techniques. In International Con-
ference on Artificial Intelligence Applications and In-
novations (AIAI), volume 677 of IFIP Advances in
Information and Communication Technology, pages
335–346. Springer.
Saravanos, C. and Kanavos, A. (2025). Forecasting
stock market volatility using social media senti-
ment analysis. Neural Computing and Applications,
37(17):10771–10794.
Savvopoulos, A., Kanavos, A., Mylonas, P., and Sioutas,
S. (2018). LSTM accelerator for convolutional object
identification. Algorithms, 11(10):157.
Sch
¨
olkopf, B. and Smola, A. J. (2002). Learning With Ker-
nels: Support Vector Machines, Regularization, Op-
timization, and Beyond. Adaptive Computation and
Machine Learning Series. MIT Press.
Selmi, R., Tiwari, A. K., and Hammoudeh, S. (2018). Effi-
ciency or speculation? a dynamic analysis of the bit-
coin market. Economics Bulletin, 38(4):2037–2046.
Shumway, R. H. and Stoffer, D. S. (2017). Arima models.
In Time Series Analysis and Its Applications, pages
75–163. Springer.
Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2018).
A comparison of ARIMA and LSTM in forecasting
time series. In 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages
1394–1401. IEEE.
Silaparasetty, N. (2020). The tensorflow machine learning
library. In Machine Learning Concepts with Python
and the Jupyter Notebook Environment: Using Ten-
sorflow 2.0, pages 149–171. Springer.
Smola, A. J. and Sch
¨
olkopf, B. (2004). A tutorial on
support vector regression. Statistics and Computing,
14(3):199–222.
Staudemeyer, R. C. and Morris, E. R. (2019). Understand-
ing LSTM - a tutorial into long short-term memory
recurrent neural networks. CoRR, abs/1909.09586.
Trigka, M., Kanavos, A., Dritsas, E., Vonitsanos, G., and
Mylonas, P. (2022). The predictive power of a twitter
user’s profile on cryptocurrency popularity. Big Data
and Cognitive Computing, 6(2):59.
Urquhart, A. (2016). The inefficiency of bitcoin. Economics
Letters, 148:80–82.
Vapnik, V. (1999). An overview of statistical learning
theory. IEEE Transactions on Neural Networks,
10(5):988–999.
Vonitsanos, G., Kanavos, A., Grivokostopoulou, F., and
Sioutas, S. (2024). Optimized price prediction of
cryptocurrencies using deep learning on high-volume
time series data. In 15th International Conference
on Information, Intelligence, Systems & Applications
(IISA), pages 1–8. IEEE.
Vonitsanos, G., Kanavos, A., and Mylonas, P. (2023). De-
coding gender on social networks: An in-depth anal-
ysis of language in online discussions using natural
language processing and machine learning. In IEEE
International Conference on Big Data, pages 4618–
4625.
Zoumpekas, T., Houstis, E. N., and Vavalis, M. (2020).
ETH analysis and predictions utilizing deep learning.
Expert Systems with Applications, 162:113866.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
266