
ing and Communication Technologies (RIVF), pages
41–46.
Jeff, V. and Kala, K. (2024). Penetration testing:
An overview of its tools and processes. Interna-
tional Journal of Research Publication and Reviews,
5(3):4346–4353.
Kong, H., Hu, D., Ge, J., Li, L., Li, T., and Wu, B. (2025).
Vulnbot: Autonomous penetration testing for a multi-
agent collaborative framework.
Koroniotis, N., Moustafa, N., Turnbull, B., Schiliro, F.,
Gauravaram, P., and Janicke, H. (2021). A deep
learning-based penetration testing framework for vul-
nerability identification in internet of things environ-
ments. In 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and
Communications (TrustCom), pages 887–894.
Li, Q., Wang, R., Li, D., Shi, F., Zhang, M., Chattopad-
hyay, A., Shen, Y., and Li, Y. (2024a). Dynpen: Auto-
mated penetration testing in dynamic network scenar-
ios using deep reinforcement learning. IEEE Transac-
tions on Information Forensics and Security, 19:8966–
8981.
Li, S., Huang, R., Han, W., Wu, X., Li, S., and Tian, Z.
(2025a). Autonomous discovery of cyber attack paths
with complex causal relationships among optional ac-
tions. IEEE Transactions on Intelligent Transporta-
tion Systems, pages 1–15.
Li, S. E. (2023). Reinforcement Learning for Sequential
Decision and Optimal Control. Springer Singapore.
Li, Y., Dai, H., and Yan, J. (2024b). Knowledge-informed
auto-penetration testing based on reinforcement learn-
ing with reward machine. In 2024 International Joint
Conference on Neural Networks (IJCNN), pages 1–9.
Li, Z., Zhang, Q., and Yang, G. (2025b). Eppta: Efficient
partially observable reinforcement learning agent for
penetration testing applications. Engineering Reports,
7(1):e12818.
Luo, F.-M., Tu, Z., Huang, Z., and Yu, Y. (2024). Efficient
recurrent off-policy rl requires a context-encoder-
specific learning rate. In Globerson, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and
Zhang, C., editors, Advances in Neural Information
Processing Systems, volume 37, pages 48484–48518.
Curran Associates, Inc.
Malkapurapu, S., Abbas, M. A. M., and Das, P. (2023). Ex-
ploring the capabilities of the metasploit framework
for effective penetration testing. In Data Science and
Network Engineering, volume 655 of Lecture Notes in
Networks and Systems, pages 457–471. Springer Na-
ture Singapore.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing Atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.
Nakatani, S. (2025). Rapidpen: Fully automated ip-to-shell
penetration testing with llm-based agents.
Pham, V.-H., Hoang, H. D., Trung, P. T., Quoc, V. D., To,
T.-N., and Duy, P. T. (2024). Raiju: Reinforcement
learning-guided post-exploitation for automating se-
curity assessment of network systems. Computer Net-
works, 253:110706.
Raj, S. and Walia, N. K. (2020). A study on metasploit
framework: A pen-testing tool. In 2020 International
Conference on Computational Performance Evalua-
tion (ComPE), pages 296–302.
Sedgwick, P. (2012). Pearson’s correlation coefficient. Bmj,
345.
Skandylas, C. and Asplund, M. (2025). Automated penetra-
tion testing: Formalization and realization. Computers
& Security, 155:104454.
Sundararajan, S. (2025). Multivariate Analysis and Ma-
chine Learning Techniques: Feature Analysis in Data
Science Using Python. Transactions on Computer
Systems and Networks. Springer Singapore, 1 edition.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. MIT Press.
Teichmann, F. M. and Boticiu, S. R. (2023). An overview
of the benefits, challenges, and legal aspects of pene-
tration testing and red teaming. International Cyber-
security Law Review, 4(4):387–397.
Wang, P., Liu, J., Zhong, X., Yang, G., Zhou, S., and Zhang,
Y. (2022). Dusc-dqn:an improved deep q-network for
intelligent penetration testing path design. In 2022 7th
International Conference on Computer and Commu-
nication Systems (ICCCS), pages 476–480.
Wieser, H., Sch
¨
afer, T., and Krauß, C. (2024). Penetra-
tion testing of in-vehicle infotainment systems in con-
nected vehicles. In 2024 IEEE Vehicular Networking
Conference (VNC), pages 156–163.
Xu, C., Du, J., Lai, B., Wang, H., Zheng, H., Dai, T., Liang,
Z., and and, Y. Y. (2025). Design and implementation
of an intelligent penetration security assessment sys-
tem based on graph neural network (gnn) technology.
Journal of Cyber Security Technology, 0(0):1–13.
Yang, Y., Chen, L., Liu, S., Wang, L., Fu, H., Liu, X., and
Chen, Z. (2024). Behaviour-diverse automatic pene-
tration testing: a coverage-based deep reinforcement
learning approach. Frontiers of Computer Science,
19(3):193309.
Yao, Q., Wang, Y., Xiong, X., and Li, Y. (2023). Intelligent
penetration testing in dynamic defense environment.
In Proceedings of the 2022 International Conference
on Cyber Security, CSW ’22, page 10–15, New York,
NY, USA. Association for Computing Machinery.
Zennaro, F. M. and Erd
˝
odi, L. (2023). Modelling penetra-
tion testing with reinforcement learning using capture-
the-flag challenges: trade-offs between model-free
learning and a priori knowledge. IET Information Se-
curity, 17(3):441–457.
Zhou, S., Liu, J., Lu, Y., Yang, J., Zhang, Y., Lin, B., Zhong,
X., and Hu, S. (2025). Script: A scalable contin-
ual reinforcement learning framework for autonomous
penetration testing. Expert Systems with Applications,
285:127827.
Multi-Objective Policy Optimization for Effective and Cost-Conscious Penetration Testing
385