Technology, 41(2), s. 625–632. https://doi.org/10.1
8280/ijht.410218
Amphenol Aerospace, 2023. The modern command and
control (C2) framework [online]. Available at:
https://www.amphenol-aerospace.com/markets/market
-connector-the-modern-command-and-control-c2-
framework
Beals, M., 2023. Artificial intelligence (AI) and machine
learning in sensor signal and image processing. Military
Aerospace Electronics [online]. Available at:
https://www.militaryaerospace.com/computers/article/
55273984/artificial-intelligence-ai-and-machine-
learning-in-sensor-signal-and-image-processing
CZ Defence, 2022. MAD21: The new camouflage pattern
for the Army of the Czech Republic will provide
effective concealment in both natural and urban
environments. [online]. Available at: https://www.czd
efence.cz
Gardony, A.L., Bryant, D.J., Healey, M.K. et al., 2022.
Target highlighting in augmented reality degrades
broader situational awareness. Journal of Cognitive
Engineering and Decision Making, 16(1), s. 34–49.
https://doi.org/10.1177/15553434211041168
Havlík, T., Blaha, M., Potužák, L., Pekař, O., Šlouf, V.
Wargaming simulator MASA SWORD for training and
education of Czech army officers. In: Proceedings of
the 16th European Conference on Games Based
Learning, ECGBL 2022. Academic Conferences
International Limited, 2022, roč. 16., s. 811-813. ISBN
978-1-914587-52-8.
Hughes, S., 2024. Artificial Intelligence in a Multidomain
Battlefield. Military Review – Journal of the U.S. Army
[online]. Available at: https://www.armyupress.a
rmy.mil/Journals/Military-Review/Online-
Exclusive/2024-OLE/Multidomain-Battlefield-AI/
Hwang, J., MA, Y., 2024. MCAM: A Military Camouflage
Dataset for Masked Target Detection. Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), s. 3125–3134.
https://doi.org/10.1109/WACV56688.2024.00308
Ivan, J., Šustr, M., Pekař, O., Potužák, L. Prospects for the
Use of Unmanned Ground Vehicles in Artillery Survey.
In: Proceedings Of The 19th International Conference
On Informatics In Control, Automation And Robotics
(ICINCO). Lisabon, Portugalsko: SCITEPRESS, 2022,
roč. 2022, s. 467-475. ISSN 2184-2809. ISBN 978-989-
758-585-2. doi:10.5220/0011300100003271
Karthiga, R., Asuntha, A., 2025. CAMOUFLAGE-Net:
Deep Camouflaged Target Detection Using YOLOv7
with Attention Mechanism. Defence Technology (In
Press).
Khoma, V., 2023. Camouflage in Ukrainian battlefield
tactics: blending, deception and adaptation. Eastern
European Security Review, 9(2), s. 103–119.
Kim, D.H., Yang, J.H., Kwon, O., 2021. Network-based
evaluation of camouflage effectiveness using clustering
of pattern similarity. Applied Sciences, 11(4), 1843.
https://doi.org/10.3390/app11041843
Li, C., Tian, Y., Zhou, M. et al., 2024. MilDetr: A
Transformer-Based Model for Detecting Camouflaged
Military Targets. Military Sensing Symposium
Proceedings. https://doi.org/10.48550/arXiv.2401.045
67
Li, Y., Zhang, J., Liu, H. et al., 2022. CSsub: A perceptual
model of camouflage effectiveness based on color,
texture and structure similarity. Computers & Graphics,
107, s. 84–93. https://doi.org/10.1016/j.cag.2022.0
1.004
Matthews, R., Wu, H., Xu, L. et al., 2024. Bio-Inspired
Camouflage in Autonomous Swarms and Bionic
Systems. Robotics and Autonomous Systems, 168,
104632. https://doi.org/10.1016/j.robot.2024.104632
Mulla, M.Y., Patil, M.A., Shinde, R.S., 2024. Comparative
Analysis of YOLOv5 Architectures for Detection of
Camouflaged Human Targets. Defence Science
Journal, 74(1), s. 58–67. https://doi.org/10.1442 9/dsj.
74.18654
Sedláček, M., Dohnal, F., Ivan, J., Šustr, M. Possible
approaches to assessing terrain mobility after the effects
of artillery munition. Cogent Social Sciences, 2024,
10(1), 2368096. ISSN 2331-1886. doi:10.1080/
23311886.2024.2368096
Su, L., Yu, H., Zhao, W., 2023. Advances in infrared
camouflage textiles: Flexible and adaptive materials for
stealth applications. Materials Today, 64, s. 92–105.
https://doi.org/10.1016/j.mattod.2023.05.001
Šlouf, V., Blaha, M., Müllner, V., Brizgalová, L., Pekař, O.
An Alternative Model for Determining The Rational
Amount of Funds Allocated to Defence of The Czech
Republic in Conditions of Expected Risk. Obrana a
strategie, 2023, 2023(1), 149-172. ISSN 1214-6463.
doi:10.3849/1802-7199.23.2023.01.149-172
Wei, Y., Deng, H., Zhou, Y. et al., 2021. DeepCam:
Automatic camouflage pattern generation via
convolutional neural networks and eye-tracking
validation. Computers & Graphics, 97, s. 1–12.
https://doi.org/10.1016/j.cag.2021.03.004
ZHANG, Weiguo, Zhen CHEN A Xiaowei WANG, 2021.
Review of camouflage and concealment strategies in
modern warfare. Defence Technology, 17(1), s. 90–
101. https://doi.org/10.1016/j.dt.2020.04.001
Zeng, X., Luo, Q., Chen, R., 2024. UAV-based
camouflaged target detection under low-angle
observation using hybrid CNN-Transformer networks.
Sensors, 24(3), 512. https://doi.org/10.3390/
s24030512.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics