
Beetz, M., Stelter, S., Beßler, D., Dhanabalachandran,
K., Neumann, M., Mania, P., and Haidu, A. (2022).
Robots Collecting Data: Modelling Stores, pages 41–
64. Springer International Publishing, Cham.
Bird, S., Loper, E., and Klein, E. (2009). Natural Language
Processing with Python. O’Reilly Media Inc.
Christen, P. (2012). Data Matching: Concepts and Tech-
niques for Record Linkage, Entity Resolution, and Du-
plicate Detection. Springer Publishing Company, In-
corporated. pages. 12–34.
Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A
comparison of string metrics for matching names and
records. In Kdd workshop on data cleaning and object
consolidation, volume 3, pages 73–78.
Dooley, D. M., Griffiths, E. J., Gosal, G. S., Buttigieg,
P. L., Hoehndorf, R., Lange, M. C., Schriml, L. M.,
Brinkman, F. S., and Hsiao, W. W. (2018). Foodon:
a harmonized food ontology to increase global food
traceability, quality control and data integration. npj
Science of Food, 2(1):23.
Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S.
(2007). Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16.
Farouk, M. (2018). Sentence Semantic Similarity based on
Word Embedding and WordNet. In 2018 13th Interna-
tional Conference on Computer Engineering and Sys-
tems (ICCES), pages 33–37.
Fellbaum, C. (2010). WordNet. In Poli, R., Healy, M.,
and Kameas, A., editors, Theory and Applications of
Ontology: Computer Applications, pages 231–243.
Springer Netherlands, Dordrecht.
GS1 (2015). Global Product Classification (GPC) Develop-
ment & Implementation Guide. GS1. Issue 8, Final,
December 2022.
GS1 (2024a). Global Product Classification (GPC). GS1.
https://www.gs1.org/standards/gpc.
GS1 (2024b). How is gpc developed and maintained?
https://support.gs1.org/support/solutions/articles/
43000734258-how-is-gpc-developed-and-maintained-.
Accessed: 2025-09-15.
GS1 (2025a). Gs1 gdsn. https://www.gs1.org/services/
gdsn. Accessed: 2025-09-15.
GS1 (2025b). How gpc works. https://www.gs1.org/
standards/gpc/how-gpc-works. Accessed: 2025-09-
15.
GS1 (2025c). How gs1 gdsn works. https://www.gs1.org/
services/gdsn/how-gdsn-works. Accessed: 2025-09-
15.
Gurevych, I. and Strube, M. (2004). Semantic Similar-
ity Applied to Spoken Dialogue Summarization. In
COLING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages 764–
770, Geneva, Switzerland. COLING.
Jatnika, D., Bijaksana, M. A., and Suryani, A. A. (2019).
Word2Vec Model Analysis for Semantic Similari-
ties in English Words. Procedia Computer Science,
157:160–167.
Kenter, T. and De Rijke, M. (2015). Short Text Similar-
ity with Word Embeddings. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, pages 1411–1420,
Melbourne Australia. ACM.
Khyani, D., Siddhartha, B., Niveditha, N., and Divya,
B. (2021). An interpretation of lemmatization and
stemming in natural language processing. Journal of
University of Shanghai for Science and Technology,
22(10):350–357.
K
¨
opcke, H. and Rahm, E. (2010). Frameworks for entity
matching: A comparison. Data & Knowledge Engi-
neering, 69(2):197–210.
K
¨
umpel, M. and Beetz, M. (2023). Productkg: A product
knowledge graph for user assistance in daily activities.
In FOIS’23: Ontology Showcase and Demonstrations
Track, 9th Joint Ontology Workshops (JOWO 2023),
co-located with FOIS 2023, 19-20 July, 2023, Sher-
brooke, Qu
´
ebec, Canada, volume 3637.
Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015).
From word embeddings to document distances. In
Bach, F. and Blei, D., editors, Proceedings of the
32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Re-
search, pages 957–966, Lille, France. PMLR.
K
¨
umpel, M. and Dech, J. (2025). Semantic digital twins for
omni-channel localisation. In Proceedings of the 11th
IFAC MIM Conference on Manufacturing Modelling,
Management and Control.
K
¨
umpel, M., Dech, J., Hawkin, A., and Beetz, M. (2023).
Robotic shopping assistance for everyone: Dynamic
query generation on a semantic digital twin as a basis
for autonomous shopping assistance. In Proceedings
of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), pages
2523–2525, London, United Kingdom.
K
¨
umpel, M., Mueller, C. A., and Beetz, M. (2021). Se-
mantic digital twins for retail logistics. In Freitag, M.,
Kotzab, H., and Megow, N., editors, Dynamics in Lo-
gistics: Twenty-Five Years of Interdisciplinary Logis-
tics Research in Bremen, Germany, pages 129–153.
Springer International Publishing, Cham.
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and
Pfister, H. (2014). Upset: Visualization of intersecting
sets. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):1983–1992.
Meng, L., Huang, R., and Gu, J. (2013). A review of se-
mantic similarity measures in wordnet. International
Journal of Hybrid Information Technology, 6(1):1–12.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Narayan, A., Chami, I., Orr, L., Arora, S., and R
´
e, C.
(2022). Can foundation models wrangle your data?
arXiv preprint arXiv:2205.09911.
OpenAI (2024). Chatgpt (gpt-4o, may 2024 version). https:
//chat.openai.com. Large language model.
Peeters, R., Steiner, A., and Bizer, C. (2023). Entity
matching using large language models. arXiv preprint
arXiv:2310.11244.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
KEOD 2025 - 17th International Conference on Knowledge Engineering and Ontology Development
50