
performed the CV-MPC approach, improving safety
margins (by 41–75%), reducing motion jerk (28–
84%), and achieving faster goal attainment (21–47%),
with only moderate efficiency trade-offs in dense
crowds. Overall, learned predictors enhance real-
world safety and social compliance, though future
work should address scalability and conservatism-
efficiency trade-offs.
ACKNOWLEDGEMENTS
This work was funded by the German Federal Min-
istry for Economic Affairs and Climate Action within
the project nxtAIM.
REFERENCES
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-
Fei, L., and Savarese, S. (2016). Social LSTM: Hu-
man trajectory prediction in crowded spaces. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 961–971. IEEE.
Bhatt, N. P., Khajepour, A., and Hashemi, E. (2023). MPC-
PF: Socially and Spatially Aware Object Trajectory
Prediction for Autonomous Driving Systems Using
Potential Fields. IEEE Transactions on Intelligent
Transportation Systems, 24(5):5351–5361.
Brito, B., Floor, B., Ferranti, L., and Alonso-Mora, J.
(2019). Model predictive contouring control for
collision avoidance in unstructured dynamic envi-
ronments. IEEE Robotics and Automation Letters,
4(4):4459–4466.
Caruana, R., Lawrence, S., and Giles, C. (2000). Overfit-
ting in neural nets: Backpropagation, conjugate gra-
dient, and early stopping. In Leen, T., Dietterich, T.,
and Tresp, V., editors, Advances in Neural Informa-
tion Processing Systems, volume 13. MIT Press.
Chen, Y., Rosolia, U., Ubellacker, W., Csomay-Shanklin,
N., and Ames, A. D. (2022). Interactive multi-
modal motion planning with branch model predic-
tive control. IEEE Robotics and Automation Letters,
7(2):5365–5372.
de Groot, O., Ferranti, L., Gavrila, D., and Alonso-Mora,
J. (2023). Globally guided trajectory planning in dy-
namic environments.
Francis, A., P
´
erez-D’Arpino, C., Li, C., Xia, F., Alahi, A.,
Alami, R., Bera, A., Biswas, A., Biswas, J., Chan-
dra, R., Chiang, H.-T. L., Everett, M., Ha, S., Hart,
J., How, J. P., Karnan, H., Lee, T.-W. E., Manso,
L. J., Mirksy, R., Pirk, S., Singamaneni, P. T., Stone,
P., Taylor, A. V., Trautman, P., Tsoi, N., V
´
azquez,
M., Xiao, X., Xu, P., Yokoyama, N., Toshev, A., and
Mart
´
ın-Mart
´
ın, R. (2023). Principles and guidelines
for evaluating social robot navigation algorithms.
Golchoubian, M., Ghafurian, M., Dautenhahn, K., and
Azad, N. L. (2023). Pedestrian trajectory prediction in
pedestrian-vehicle mixed environments: A systematic
review. IEEE Transactions on Intelligent Transporta-
tion Systems, 24(11):11544–11567.
Huang, L., Zhuang, J., Cheng, X., Xu, R., and Ma, H.
(2021). STI-GAN: Multimodal pedestrian trajectory
pre-diction using spatiotemporal interactions and a
generative adversarial network. IEEE Access.
Korbmacher, R. and Tordeux, A. (2022). Review of pedes-
trian trajectory prediction methods: Comparing deep
learning and knowledge-based approaches.
Lian, J., Ren, W., Li, L., Zhou, Y., and Zhou, B. (2023).
PTP-STGCN: Pedestrian trajectory prediction based
on a spatio-temporal graph convolutional neural net-
work. Applied Intelligence, 53(3):2862–2878.
Mangalam, K., An, Y., Girase, H., and Malik, J. (2020).
From goals, waypoints & paths to long term human
trajectory forecasting.
Mohamed, A., Qian, K., Elhoseiny, M., and Claudel, C.
(2020). Social-STGCNN: A social spatio-temporal
graph convolutional neural network for human tra-
jectory prediction. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 14412–14420. ISSN: 2575-7075.
Mohamed, A., Zhu, D., Vu, W., Elhoseiny, M., and Claudel,
C. (2022). Social-implicit: Rethinking trajectory pre-
diction evaluation and the effectiveness of implicit
maximum likelihood estimation.
Pellegrini, S., Ess, A., Schindler, K., and van Gool, L.
(2009). You’ll never walk alone: Modeling social be-
havior for multi-target tracking. In 2009 IEEE 12th
International Conference on Computer Vision, pages
261–268.
Piccinelli, N., Vesentini, F., and Muradore, R. (2023). MPC
Based Motion Planning For Mobile Robots Using Ve-
locity Obstacle Paradigm. In 2023 European Control
Conference (ECC), pages 1–6.
Salzmann, T., Ivanovic, B., Chakravarty, P., and Pavone,
M. (2021). Trajectron++: Dynamically-feasible tra-
jectory forecasting with heterogeneous data.
Sani, M., Robu, B., and Hably, A. (2021). Dynamic obsta-
cles avoidance using nonlinear model predictive con-
trol. In IECON 2021 – 47th Annual Conference of the
IEEE Industrial Electronics Society, pages 1–6.
Sighencea, B. I., Stanciu, R. I., and C
˘
aleanu, C. D. (2021).
A review of deep learning-based methods for pedes-
trian trajectory prediction. Sensors, 21(22):7543.
Vo, V. D., Huy Pham, Q. A., Le, Q. T., Le, M. H., and Tran,
D. T. (2024). A model predictive control for dynamic
obstacle avoidance of a mobile robot based on ros.
In 2024 7th International Conference on Green Tech-
nology and Sustainable Development (GTSD), pages
299–303.
Wabersich, K. P., Taylor, A. J., Choi, J. J., Sreenath, K.,
Tomlin, C. J., Ames, A. D., and Zeilinger, M. N.
(2023). Data-driven safety filters: Hamilton-jacobi
reachability, control barrier functions, and predictive
methods for uncertain systems. IEEE Control Sys-
tems, 43(5):137–177.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
258