
Towards llm driven prior knowledge. arXiv preprint
arXiv:2306.07032.
Dieng, A. B., Ruiz, F. J., and Blei, D. M. (2020). Topic
modeling in embedding spaces. Transactions of the
Association for Computational Linguistics, 8:439–
453.
Gao, H., Yao, C., Li, J., Si, L., Jin, Y., Wu, F., and
Liu, H. (2024). Rethinking causal relationships learn-
ing in graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 12145–12154.
Grootendorst, M. (2022). Bertopic: Neural topic model-
ing with a class-based tf-idf procedure. arXiv preprint
arXiv:2203.05794.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. (2017). Improved training of wasser-
stein gans. In Advances in Neural Information Pro-
cessing Systems, volume 30.
Kaushik, D., Hovy, E., and Lipton, Z. C. (2019). Learn-
ing the difference that makes a difference with
counterfactually-augmented data. arXiv preprint
arXiv:1909.12434.
Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath,
S. (2017). Causalgan: Learning causal implicit gener-
ative models with adversarial training. arXiv preprint
arXiv:1709.02023.
Lagemann, K., Lagemann, C., Taschler, B., and Mukherjee,
S. (2023). Deep learning of causal structures in high
dimensions under data limitations. Nature Machine
Intelligence, 5(11):1306–1316.
Liu, Z., Grau-Bove, J., and Orr, S. A. (2022). Bert-flow-
vae: a weakly-supervised model for multi-label text
classification. arXiv preprint arXiv:2210.15225.
Miao, Y., Yu, L., and Blunsom, P. (2016). Neural varia-
tional inference for text processing. In International
Conference on Machine Learning, pages 1727–1736.
PMLR.
Morstatter, F. and Liu, H. (2018). In search of coherence
and consensus: measuring the interpretability of sta-
tistical topics. Journal of Machine Learning Research,
18(169):1–32.
Panwar, M., Shailabh, S., Aggarwal, M., and Krishna-
murthy, B. (2020). Tan-ntm: Topic attention net-
works for neural topic modeling. arXiv preprint
arXiv:2012.01524.
Park, S. and Kim, J. (2023). Dag-gcn: directed acyclic
causal graph discovery from real world data using
graph convolutional networks. In 2023 IEEE Interna-
tional Conference on Big Data and Smart Computing
(BigComp), pages 318–319. IEEE.
Pawlowski, N., de Castro, D. C., and Glocker, B. (2020).
Deep structural causal models for tractable counter-
factual inference. In Advances in Neural Information
Processing Systems, volume 33, pages 857–869.
Prostmaier, B., V
´
avra, J., Gr
¨
un, B., and Hofmarcher, P.
(2025). Seeded poisson factorization: Leveraging do-
main knowledge to fit topic models. arXiv preprint
arXiv:2503.02741.
Rana, M., Hacioglu, K., Gopalan, S., and Boothalingam,
M. (2024). Zero-shot slot filling in the age of llms for
dialogue systems. arXiv preprint arXiv:2411.18980.
Shen, D., Qin, C., Wang, C., Dong, Z., Zhu, H., and
Xiong, H. (2021). Topic modeling revisited: A doc-
ument graph-based neural network perspective. In
Advances in Neural Information Processing Systems,
volume 34, pages 14681–14693.
Srivastava, A. and Sutton, C. (2017). Autoencoding vari-
ational inference for topic models. arXiv preprint
arXiv:1703.01488.
Tang, Y. K., Huang, H., Shi, X., and Mao, X. L. (2024). Be-
yond labels and topics: Discovering causal relation-
ships in neural topic modeling. In Proceedings of the
ACM Web Conference 2024, pages 4460–4469.
Venugopalan, M. and Gupta, D. (2022). An enhanced
guided lda model augmented with bert based semantic
strength for aspect term extraction in sentiment analy-
sis. Knowledge-based Systems, 246:108668.
Wang, B., Li, J., Chang, H., Zhang, K., and Tsung, F.
(2025). Heterophilic graph neural networks optimiza-
tion with causal message-passing. In Proceedings of
the Eighteenth ACM International Conference on Web
Search and Data Mining, pages 829–837.
Wu, Y., McConnell, L., and Iriondo, C. (2024). Counterfac-
tual generative modeling with variational causal infer-
ence. arXiv preprint arXiv:2410.12730.
Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., and Wang, J.
(2021). Causalvae: Disentangled representation learn-
ing via neural structural causal models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9593–9602.
Yang, Y., Nafea, M. S., Ghassami, A., and Kiyavash, N.
(2022). Causal discovery in linear structural causal
models with deterministic relations. In Conference
on Causal Learning and Reasoning, pages 944–993.
PMLR.
Yu, Y., Chen, J., Gao, T., and Yu, M. (2019). Dag-gnn: Dag
structure learning with graph neural networks. In In-
ternational Conference on Machine Learning, pages
7154–7163. PMLR.
Ze
ˇ
cevi
´
c, M., Dhami, D. S., Veli
ˇ
ckovi
´
c, P., and Kersting, K.
(2021). Relating graph neural networks to structural
causal models. arXiv preprint arXiv:2109.04173.
Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
(2018). Dags with no tears: Continuous optimization
for structure learning. In Advances in Neural Informa-
tion Processing Systems, volume 31.
Zhu, B., Cai, Y., and Ren, H. (2023). Graph neural topic
model with commonsense knowledge. Information
Processing & Management, 60(2):103215.
Zhu, Q., Feng, Z., and Li, X. (2018). Graphbtm: Graph en-
hanced autoencoded variational inference for biterm
topic model. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4663–4672.
CGNTM: Unsupervised Causal Topic Modeling with LLMs and Nonlinear Causal GNNs
285