
with multiple views for deep convolutional neural net-
work. In 2019 IEEE international conference on mul-
timedia and expo (ICME), pages 1360–1365. IEEE.
Hein, M., Andriushchenko, M., and Bitterwolf, J. (2019).
Why relu networks yield high-confidence predictions
far away from the training data and how to mitigate the
problem. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
41–50.
Hesamian, M. H., Jia, W., He, X., and Kennedy, P. (2019).
Deep learning techniques for medical image segmen-
tation: achievements and challenges. Journal of digi-
tal imaging, 32:582–596.
Hwang, Y., Jo, W., Hong, J., and Choi, Y. (2024). Overcom-
ing overconfidence for active learning. IEEE Access.
Jiang, L., Huang, D., Liu, M., and Yang, W. (2020). Beyond
synthetic noise: Deep learning on controlled noisy la-
bels. In International conference on machine learn-
ing, pages 4804–4815. PMLR.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics
yolov8.
Kaltenpoth, D. and Vreeken, J. (2023). Identifying selec-
tion bias from observational data. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 8177–8185.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., et al. (2023). Segment anything. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4015–4026.
Kokilepersaud, K., Logan, Y.-Y., Benkert, R., Zhou, C.,
Prabhushankar, M., AlRegib, G., Corona, E., Singh,
K., and Parchami, M. (2023). Focal: A cost-aware
video dataset for active learning. In 2023 IEEE In-
ternational Conference on Big Data (BigData), pages
1269–1278. IEEE.
Kristiadi, A., Hein, M., and Hennig, P. (2020). Being
bayesian, even just a bit, fixes overconfidence in relu
networks. In International conference on machine
learning, pages 5436–5446. PMLR.
Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., et al. (2020). The open images dataset
v4: Unified image classification, object detection, and
visual relationship detection at scale. International
journal of computer vision, 128(7):1956–1981.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks. Advances in neural infor-
mation processing systems, 31.
Li, J., Chen, P., He, Z., Yu, S., Liu, S., and Jia, J. (2023). Re-
thinking out-of-distribution (ood) detection: Masked
image modeling is all you need. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 11578–11589.
Li, K., Li, G., Wang, Y., Huang, Y., Liu, Z., and Wu,
Z. (2021a). Crowdrl: An end-to-end reinforcement
learning framework for data labelling. In 2021 IEEE
37th International Conference on Data Engineering
(ICDE), pages 289–300. IEEE.
Li, L., Zhang, S., and Wang, B. (2021b). Plant disease de-
tection and classification by deep learning—a review.
IEEE Access, 9:56683–56698.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Loshchilov, I. and Hutter, F. (2016). SGDR: stochas-
tic gradient descent with warm restarts. CoRR,
abs/1608.03983.
Maciejewski, H., Walkowiak, T., and Szyc, K. (2022). Out-
of-distribution detection in high-dimensional data us-
ing mahalanobis distance-critical analysis. In Interna-
tional Conference on Computational Science, pages
262–275. Springer.
Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020).
Machine learning with oversampling and undersam-
pling techniques: overview study and experimental
results. In 2020 11th international conference on in-
formation and communication systems (ICICS), pages
243–248. IEEE.
Mou, Y., He, K., Wang, P., Wu, Y., Wang, J., Wu, W.,
and Xu, W. (2022). Watch the neighbors: A uni-
fied k-nearest neighbor contrastive learning frame-
work for ood intent discovery. arXiv preprint
arXiv:2210.08909.
M
¨
uller, R., Kornblith, S., and Hinton, G. E. (2019). When
does label smoothing help? Advances in neural infor-
mation processing systems, 32.
Murrugarra-Llerena, J., Kirsten, L. N., and Jung, C. R.
(2022). Can we trust bounding box annotations for
object detection? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 4813–4822.
Nardi, E., Padilha, B., Kamaura, L., and Ferreira, J. (2022).
Openimages cyclists: Expandindo a generalizac¸
˜
ao na
detecc¸
˜
ao de ciclistas em c
ˆ
ameras de seguranc¸a. In
Anais do XXXVII Simp
´
osio Brasileiro de Bancos de
Dados, pages 229–240, Porto Alegre, RS, Brasil.
SBC.
Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 427–436.
Podolskiy, A., Lipin, D., Bout, A., Artemova, E., and Pi-
ontkovskaya, I. (2021). Revisiting mahalanobis dis-
tance for transformer-based out-of-domain detection.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13675–13682.
Ren, J., Fort, S., Liu, J., Roy, A. G., Padhy, S., and Lak-
shminarayanan, B. (2021a). A simple fix to ma-
halanobis distance for improving near-ood detection.
arXiv preprint arXiv:2106.09022.
Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. (2021b). A sur-
vey of deep active learning. ACM computing surveys
(CSUR), 54(9):1–40.
Semi-Supervised Object Labeling on Video Data with Collaborative Classification and Active Learning
255