Benferhat, S., Bouraoui, Z., and Tabia, K. (2014). On
the revision of prioritized DL - Lite knowledge bases.
In Scalable Uncertainty Management, pages 22–36,
Cham. Springer International Publishing.
Bosc, P. and Prade, H. (1997). An Introduction to the F uzzy
Set and Possibility Theory-Based Treatment of Flex-
ible Queries and Uncertain or Imprecise Databases,
pages 285–324. Springer US, Boston, MA.
Boutouhami, K., Benferhat, S., Khellaf, F., and Nouioua, F.
(2017). U ncertain lightweight ontologies in a product-
based possibility theory framework. International
Journal of Approximate Reasoning, 88:237–258.
Ceravolo, P., Damiani, E., and Leida, M. (2008). Which
role for an ontology of uncertainty? In International
Workshop on Uncertainty Reasoning for the Semantic
Web, volume 423.
Dubois, D., Lang, J., and Prade, H. (1994). Possibilistic
logic. Handbook of logic in artificial intelligence and
logic programming, pages 439–513.
Dubois, D. and Prade, H. (1986). Weighted minimum and
maximum operations in fuzzy set theory. Information
Sciences, 39(2):205–210.
Dubois, D. and Prade, H. (2014). Possibilistic logic—an
overview. Handbook of t he History of Logic, 9:283–
342.
Dubois, D. and Prade, H. (2015). Possibility theory and it s
applications: Where do we stand? Mathware and Soft
Computing Magazine, 18.
Gordon, J. and Shortliffe, E. H. (1984). The dempster-
shafer theory of evidence. Rule-Based Expert Sys-
tems: The MYCIN E xperiments of the Stanford
Heuristic Programming Project, 3(832-838):3–4.
Grabisch, M. (1998). Fuzzy Integral as a Flexible and Inter-
pretable Tool of Aggregation, pages 51–72. Physica-
Verlag HD, Heidelberg.
Gries, D. and Schneider, F. B. (1993). A logical approach
to discrete math. Springer-Verlag, Berlin, Heidelberg.
Imieli´nski, T. and Li pski, W. (1984). The relati onal model
of data and cylindric algebras. Journal of Computer
and System Sciences, 28(1):80–102.
Khedri, R., Chiang, F., and S abri, K. E. (2013). An alge-
braic approach for data cleansing. In the 4th EUSPN,
volume 21 of Procedia Computer Science, pages 50 –
59. Procedia Computer Science.
Kovalerchuk, B. (2017). Relationships Between Probabil-
ity and Possibility Theories, pages 97–122. Springer
International Publishing, Cham.
Laha, R. G. and Rohatgi, V. K. (2020). Probability theory.
Courier Dover Publications.
Ma, Z. M., Zhang, F., Wang, H., and Yan, L. (2013).
An overview of fuzzy description logics for the se-
mantic web. The Knowledge Engineering Review,
28(1):1–34.
Marinache, A. (2025). Syntax and Semantics of Domain
Information System and its usage in conjecture verifi-
cation. PhD thesis, School of Graduate S tudies, Mc-
Master University, Hamilton, Ontario, Canada.
Marinache, A., Khedri, R., LeCl ai r, A., and MacCaull, W.
(2021). DIS: A data-centred knowledge representa-
tion formalism. In (RDAAPS) 2021: A Big Data Chal-
lenge, pages 1–8.
McClean, S. I. (2003). Data mining and knowledge discov-
ery. In Encyclopedia of Physical Science and Technol-
ogy (Third Edition), pages 229–246. Academic Press,
New York, third edition edition.
Mohamed, R., Loukil, Z., and Bouraoui, Z. (2018).
Qualitative-based possibilistic el ontology. In PRIMA
2018: Principles and Practice of Multi -Agent Sys-
tems, pages 552–559, Cham. Springer International
Publishing.
Nieves, J. C., Osorio, M., and Cort´es, U. (2007). Semantics
for possibilistic disjunctive programs. In LPNMR: 9th
International C onference, Tempe, AZ, USA, May 15-
17, 2007. Proceedings 9, pages 315–320. Springer.
Qi, G., Ji, Q., Pan, J. Z., and Du, J. (2011). E xtending
description logics with uncertainty reasoning i n possi-
bilistic logic. International Journal of Intelligent Sys-
tems, 26(4):353–381.
Safia, B.-B. and Aicha, M. (2014). Poss-OWL 2: Possibilis-
tic extension of OWL 2 for an uncertain geographic
ontology. Procedia Computer Science, 35:407–416.
Sentz, K. and Ferson, S. (2002). Combination of evidence
in Dempster-Shafer theory, volume 4015. Sandia Na-
tional Laboratories Albuquerque.
Straccia, U. (2013). Foundations of Fuzzy Logic and Se-
mantic Web Languages. Chapman & Hall/CRC.
Straccia, U. and Bobillo, F. (2017). From Fuzzy to An-
notated Semantic Web Languages, pages 203–240.
Springer International Publishing, Cham.
Sun, S. (2013). A novel semantic quantitative description
method based on possibilistic logic. Journal of Intel-
ligent & Fuzzy Systems, 25:931–940.
Wang, Y., Chen, Y., Alomair, D., and K hedri, R. (2022).
DISEL: A language for specifying DIS-based ontolo-
gies. In (KSEM) 2022, Lecture Notes in Artificial In-
telligence, pages 1–16, Singapore. Springer.
Zadeh, L. (1999). Fuzzy sets as a basis for a theory of pos-
sibility. Fuzzy Sets and Systems, 100:9–34.