
REFERENCES
Agrawal, G., Kumarage, T., Alghamdi, Z., and Liu, H.
(2023). Can knowledge graphs reduce hallucinations
in llms?: A survey. arXiv preprint arXiv:2311.07914.
Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H.
(2024). Self-RAG: Learning to retrieve, generate, and
critique through self-reflection. In The Twelfth Inter-
national Conference on Learning Representations.
Babaiha, N. S., Elsayed, H., Zhang, B., Kaladharan, A.,
Sethumadhavan, P., Schultz, B., Klein, J., Freuden-
sprung, B., Lage-Rupprecht, V., Kodamullil, A. T.,
Jacobs, M., Geissler, S., Madan, S., and Hofmann-
Apitius, M. (2023). A natural language processing
system for the efficient updating of highly curated
pathophysiology mechanism knowledge graphs. Ar-
tificial Intelligence in the Life Sciences, 4:100078.
Cash, T. N., Oppenheimer, D. M., and Christie, S. (2024).
Quantifying uncertainty: Testing the accuracy of llms’
confidence judgments.
Feng, C., Zhang, X., and Fei, Z. (2023). Knowledge solver:
Teaching llms to search for domain knowledge from
knowledge graphs. arXiv preprint arXiv:2309.03118.
Hatem, S., Khoriba, G., Gad-Elrab, M. H., and ElHelw,
M. (2024). Up to date: Automatic updating knowl-
edge graphs using llms. Procedia Computer Science,
244:327–334. 6th International Conference on AI in
Computational Linguistics.
Lai, H., Liu, X., Iong, I. L., Yao, S., Chen, Y., Shen, P.,
Yu, H., Zhang, H., Zhang, X., Dong, Y., and Tang,
J. (2024). Autowebglm: A large language model-
based web navigating agent. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’24, page 5295–5306,
New York, NY, USA. Association for Computing Ma-
chinery.
Li, J., Tang, T., Zhao, W. X., Wang, J., Nie, J.-Y., and Wen,
J.-R. (2023). The web can be your oyster for improv-
ing large language models.
Liu, F., Liu, Y., Shi, L., Huang, H., Wang, R., Yang, Z.,
Zhang, L., Li, Z., and Ma, Y. (2024). Exploring and
evaluating hallucinations in llm-powered code gener-
ation.
Liu, X., Lai, H., Yu, H., Xu, Y., Zeng, A., Du, Z., Zhang,
P., Dong, Y., and Tang, J. (2023). Webglm: Towards
an efficient web-enhanced question answering system
with human preferences.
Mousavi, S. M., Alghisi, S., and Riccardi, G. (2024). Dy-
know: Dynamically verifying time-sensitive factual
knowledge in llms.
Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saun-
ders, W., Jiang, X., Cobbe, K., Eloundou, T., Krueger,
G., Button, K., Knight, M., Chess, B., and Schul-
man, J. (2022). Webgpt: Browser-assisted question-
answering with human feedback.
Peng, C., Xia, F., Naseriparsa, M., and Osborne, F. (2023).
Knowledge graphs: Opportunities and challenges. Ar-
tificial Intelligence Review, 56(11):13071–13102.
Polleres, A., Pernisch, R., Bonifati, A., Dell’Aglio, D., Do-
briy, D., Dumbrava, S., Etcheverry, L., Ferranti, N.,
Hose, K., Jim
´
enez-Ruiz, E., et al. (2023). How does
knowledge evolve in open knowledge graphs? Trans-
actions on Graph Data and Knowledge, 1(1):11–1.
Rosso, P., Yang, D., Ostapuk, N., and Cudr
´
e-Mauroux, P.
(2021). Reta: A schema-aware, end-to-end solution
for instance completion in knowledge graphs. In Pro-
ceedings of the Web Conference 2021, pages 845–856.
Shenoy, K., Ilievski, F., Garijo, D., Schwabe, D., and
Szekely, P. (2022). A study of the quality of wikidata.
Journal of Web Semantics, 72:100679.
Sriramanan, G., Bharti, S., Sadasivan, V. S., Saha, S., Kat-
takinda, P., and Feizi, S. (2024). Llm-check: Inves-
tigating detection of hallucinations in large language
models. In Globerson, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J., and Zhang, C., edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 37, pages 34188–34216. Curran Asso-
ciates, Inc.
Tang, J., Feng, Y., and Zhao, D. (2019). Learning to up-
date knowledge graphs by reading news. In Inui,
K., Jiang, J., Ng, V., and Wan, X., editors, Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2632–2641, Hong
Kong, China. Association for Computational Linguis-
tics.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozi
`
ere, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,
and Lample, G. (2023). Llama: Open and efficient
foundation language models.
Vrande
ˇ
ci
´
c, D. and Kr
¨
otzsch, M. (2014). Wikidata: a
free collaborative knowledgebase. Commun. ACM,
57(10):78–85.
Wei, Y., Huang, Q., Kwok, J. T., and Zhang, Y. (2024).
Kicgpt: Large language model with knowledge in
context for knowledge graph completion. arXiv
preprint arXiv:2402.02389.
Xie, W., Liang, X., Liu, Y., Ni, K., Cheng, H., and
Hu, Z. (2024). Weknow-rag: An adaptive approach
for retrieval-augmented generation integrating web
search and knowledge graphs.
Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., and Hooi, B.
(2023). Can llms express their uncertainty? an empir-
ical evaluation of confidence elicitation in llms. arXiv
preprint arXiv:2306.13063.
Yang, B., tau Yih, W., He, X., Gao, J., and Deng, L. (2015).
Embedding entities and relations for learning and in-
ference in knowledge bases.
Yao, L., Peng, J., Mao, C., and Luo, Y. (2025). Exploring
large language models for knowledge graph comple-
tion. In ICASSP 2025-2025 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE.
Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y.,
Deng, S., Chen, H., and Zhang, N. (2024). Llms for
knowledge graph construction and reasoning: Recent
capabilities and future opportunities. World Wide Web,
27(5):58.
AutoVU-KG: Automated Validation and Updates for Knowledge Graphs with Web-Search-Augmented LLMs
265