
Neural Information Processing Systems, volume 36,
pages 10088–10115. Curran Associates, Inc.
Dua, M., Akanksha, and Dua, S. (2023). Noise robust auto-
matic speech recognition: review and analysis. Int. J.
Speech Technol., 26(2):475–519.
Ephraim, Y. and Malah, D. (1984). Speech enhancement us-
ing a minimum-mean square error short-time spectral
amplitude estimator. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 32(6):1109–1121.
G., T. Y., B.G., N., and Jayanna, H. (2024). Development
of noise robust real time automatic speech recognition
system for kannada language/dialects. Engineering
Applications of Artificial Intelligence, 135:108693.
Gholami, A., Kim, S., Zhen, D., Yao, Z., Mahoney, M., and
Keutzer, K. (2022). A Survey of Quantization Methods
for Efficient Neural Network Inference, pages 291–
326.
Gomez, R. and Kawahara, T. (2010). Optimizing spec-
tral subtraction and wiener filtering for robust speech
recognition in reverberant and noisy conditions. In
2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 4566–4569.
Huang, X., Baker, J., and Reddy, R. (2014). A historical
perspective of speech recognition. Commun. ACM,
57(1):94–103.
Jiang, Y. and Poellabauer, C. (2021). A sequence-to-
sequence based error correction model for medical au-
tomatic speech recognition. In 2021 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine
(BIBM), pages 3029–3035.
Kamahori, K., Kasai, J., Kojima, N., and Kasikci, B. (2025).
Liteasr: Efficient automatic speech recognition with
low-rank approximation.
Li, J., Deng, L., Gong, Y., and Haeb-Umbach, R. (2014).
An overview of noise-robust automatic speech recog-
nition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22(4):745–777.
Ma, R., Qian, M., Manakul, P., Gales, M., and Knill, K.
(2023). Can generative large language models per-
form asr error correction?
Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. (2022). Peft: State-of-the-art
parameter-efficient fine-tuning methods. https://gith
ub.com/huggingface/peft.
Mehrish, A., Majumder, N., Bharadwaj, R., Mihalcea, R.,
and Poria, S. (2023). A review of deep learning tech-
niques for speech processing. Information Fusion,
99:101869.
Moore, A., Peso Parada, P., and Naylor, P. (2017). Speech
enhancement for robust automatic speech recognition:
Evaluation using a baseline system and instrumental
measures. Computer Speech & Language, 46:574–
584.
Orel, D. and Varol, H. A. (2023). Noise-robust automatic
speech recognition for industrial and urban environ-
ments. In IECON 2023- 49th Annual Conference of
the IEEE Industrial Electronics Society, pages 1–6.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. (2022). Robust speech recogni-
tion via large-scale weak supervision.
Rao, M., Raju, A., Dheram, P., Bui, B., and Rastrow, A.
(2020). Speech to semantics: Improve asr and nlu
jointly via all-neural interfaces. In Interspeech 2020,
page 876–880. ISCA.
Schröter, H., Escalante-B., A. N., Rosenkranz, T., and
Maier, A. (2022). DeepFilterNet: A low complexity
speech enhancement framework for full-band audio
based on deep filtering. In ICASSP 2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE.
Suh, J., Na, I., and Jung, W. (2024). Improving domain-
specific asr with llm-generated contextual descrip-
tions. In Proc. Interspeech 2024, pages 1255–1259.
Virtanen, T., Plumbley, M. D., and Ellis, D. (2017). Com-
putational Analysis of Sound Scenes and Events.
Springer Publishing Company, Incorporated, 1st edi-
tion.
Yang, C.-H. H., Gu, Y., Liu, Y. C., Ghosh, S., Bulyko, I.,
and Stolcke, A. (2023). Generative speech recognition
error correction with large language models and task-
activating prompting.
Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A. E.-D., Jin,
W., and Schuller, B. (2018). Deep learning for envi-
ronmentally robust speech recognition: An overview
of recent developments. ACM Trans. Intell. Syst. Tech-
nol., 9(5).
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
486