
Eberhard, O., Hollenstein, J., Pinneri, C., and Martius, G.
(2023). Pink noise is all you need: Colored noise
exploration in deep reinforcement learning. In Pro-
ceedings of the Eleventh International Conference on
Learning Representations (ICLR 2023).
Gu, F., Sang, H., Zhou, Y., Ma, J., Jiang, R., Wang, Z., and
He, B. (2025). Learning Graph Dynamics with Inter-
action Effects Propagation for Deformable Linear Ob-
jects Shape Control. IEEE Transactions on Automa-
tion Science and Engineering.
Keipour, A., Bandari, M., and Schaal, S. (2022). De-
formable One-Dimensional Object Detection for
Routing and Manipulation. IEEE Robotics and Au-
tomation Letters, 7(2).
Koessler, A., Filella, N. R., Bouzgarrou, B., Lequievre, L.,
and Ramon, J.-A. C. (2021). An efficient approach
to closed-loop shape control of deformable objects us-
ing finite element models. In 2021 IEEE International
Conference on Robotics and Automation (ICRA).
Matsuno, T., Tamaki, D., Arai, F., and Fukuda, T. (2006).
Manipulation of deformable linear objects using knot
invariants to classify the object condition based on im-
age sensor information. IEEE/ASME Transactions on
Mechatronics, 11(4).
Monguzzi, A., Dotti, T., Fattorelli, L., Zanchettin, A. M.,
and Rocco, P. (2025). Optimal model-based path plan-
ning for the robotic manipulation of deformable linear
objects. Robotics and Computer-Integrated Manufac-
turing, 92.
Pezzato, C., Salmi, C., Trevisan, E., Spahn, M., Alonso-
Mora, J., and Hern
´
andez Corbato, C. (2025).
Sampling-Based Model Predictive Control Leverag-
ing Parallelizable Physics Simulations. IEEE Robotics
and Automation Letters, 10(3).
Rabaetje, R. (2003). Real-time Simulation of Deformable
Objects for Assembly Simulations. In Proceedings of
the Fourth Australasian User Interface Conference on
User Interfaces 2003 - Volume 18.
Sanchez, J., Corrales, J.-A., Bouzgarrou, B.-C., and
Mezouar, Y. (2018). Robotic manipulation and sens-
ing of deformable objects in domestic and industrial
applications: a survey. The International Journal of
Robotics Research, 37(7).
Schulman, J., Lee, A., Ho, J., and Abbeel, P. (2013). Track-
ing deformable objects with point clouds. In 2013
IEEE International Conference on Robotics and Au-
tomation.
Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems.
Wang, C., Zhang, Y., Zhang, X., Wu, Z., Zhu, X., Jin, S.,
Tang, T., and Tomizuka, M. (2022). Offline-Online
Learning of Deformation Model for Cable Manipula-
tion with Graph Neural Networks. IEEE Robotics and
Automation Letters, 7(2).
Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and
Theodorou, E. A. (2016). Aggressive driving with
model predictive path integral control. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA).
Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg,
J. M., Boots, B., and Theodorou, E. A. (2017). Infor-
mation theoretic MPC for model-based reinforcement
learning. In 2017 IEEE International Conference on
Robotics and Automation (ICRA).
Yan, M., Zhu, Y., Jin, N., and Bohg, J. (2020). Self-
Supervised Learning of State Estimation for Manip-
ulating Deformable Linear Objects.
Yang, Y., Stork, J. A., and Stoyanov, T. (2022). Learning
differentiable dynamics models for shape control of
deformable linear objects. Robotics and Autonomous
Systems, 158.
Yin, H., Varava, A., and Kragic, D. (2021). Model-
ing, learning, perception, and control methods for
deformable object manipulation. Science Robotics,
6(54).
Yu, M., Lv, K., Zhong, H., Song, S., and Li, X. (2023).
Global Model Learning for Large Deformation Con-
trol of Elastic Deformable Linear Objects: An Effi-
cient and Adaptive Approach. IEEE Transactions on
Robotics, 39(1).
Yu, M., Zhong, H., and Li, X. (2022). Shape Control of
Deformable Linear Objects with Offline and Online
Learning of Local Linear Deformation Models. In
2022 International Conference on Robotics and Au-
tomation (ICRA).
Zhou, H., Li, S., Lu, Q., and Qian, J. (2020). A Practical
Solution to Deformable Linear Object Manipulation:
A Case Study on Cable Harness Connection. In 2020
5th International Conference on Advanced Robotics
and Mechatronics (ICARM). IEEE.
Zhu, J., Cherubini, A., Dune, C., Navarro-Alarcon, D.,
Alambeigi, F., Berenson, D., Ficuciello, F., Harada,
K., Kober, J., Li, X., Pan, J., Yuan, W., and Gienger,
M. (2022). Challenges and Outlook in Robotic Ma-
nipulation of Deformable Objects. IEEE Robotics and
Automation Magazine, 29(3).
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
58