
ACKNOWLEDGMENT
This research was supported by Flanders Make, the
strategic research centre for the manufacturing industry
in Belgium, in the framework of the OptiBATT_IRVA
project.
REFERENCES
Abdollahi, A., Han, X., Avvari, G., Raghunathan, N., Bal-
asingam, B., Pattipati, K. R., and Bar-Shalom, Y.
(2016). Optimal battery charging, part i: Minimiz-
ing time-to-charge, energy loss, and temperature rise
for ocv-resistance battery model. Journal of Power
Sources, 303:388–398.
Agency, I. E. (2024). Global ev outlook 2024: Moving
towards increased affordability.
Akbarzadeh, M., Kalogiannis, T., Jaguemont, J., He, J., Jin,
L., Berecibar, M., and Van Mierlo, J. (2020). Ther-
mal modeling of a high-energy prismatic lithium-ion
battery cell and module based on a new thermal char-
acterization methodology. Journal of Energy Storage,
32:101707.
Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., and
Diehl, M. (2019). Casadi: a software framework for
nonlinear optimization and optimal control. Mathemat-
ical Programming Computation, 11:1–36.
Bazlen, S., Heugel, P., von Kessel, O., Commerell, W., and
Tübke, J. (2022). Influence of charging protocols on the
charging capability and aging of lithium-ion cells with
silicon-containing anodes. Journal of Energy Storage,
49:104044.
Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G., and
Howey, D. A. (2017). Degradation diagnostics for
lithium ion cells. Journal of Power Sources, 341:373–
386.
Cai, Y., Che, Y., Li, H., Jiang, M., and Qin, P. (2021).
Electro-thermal model for lithium-ion battery simu-
lations. Journal of Power Electronics, 21(10):1530–
1541.
Christophersen, J. P. (2015). Battery test manual for electric
vehicles, revision 3. Technical report, Idaho National
Lab.(INL), Idaho Falls, ID (United States).
den Boef, P., Cox, P. B., and Tóth, R. (2021). Lpvcore:
Matlab toolbox for lpv modelling, identification and
control. IFAC-PapersOnLine, 54(7):385–390.
Erdinc, O., Vural, B., and Uzunoglu, M. (2009). A dynamic
lithium-ion battery model considering the effects of
temperature and capacity fading. In 2009 International
Conference on Clean Electrical Power, pages 383–386.
IEEE.
Gillis, J., Vandewal, B., Pipeleers, G., and Swevers, J. (2020).
Effortless modeling of optimal control problems with
rockit. In 39th Benelux Meeting on Systems and Con-
trol, volume 138. Elspeet, The Netherlands.
Hoekstra, F., Donkers, M., and Bergveld, H. (2023). Rapid
empirical battery electromotive-force and overpotential
modelling using input–output linear parameter-varying
methods. Journal of Energy Storage, 65:107185.
Hostens, E., Eryilmaz, K., Vangilbergen, M., and Ooijevaar,
T. (2024). Bayesian networks for remaining useful
life prediction. In PHM Society European Conference,
volume 8, pages 11–11.
Klein, R., Chaturvedi, N. A., Christensen, J., Ahmed, J.,
Findeisen, R., and Kojic, A. (2011). Optimal charging
strategies in lithium-ion battery. In Proceedings of the
2011 american Control Conference, pages 382–387.
IEEE.
Li, Y., Li, K., Xie, Y., Liu, J., Fu, C., and Liu, B. (2020).
Optimized charging of lithium-ion battery for elec-
tric vehicles: Adaptive multistage constant current–
constant voltage charging strategy. Renewable energy,
146:2688–2699.
Lu, Y., Han, X., Li, Y., Li, X., and Ouyang, M. (2024).
Health-aware fast charging for lithium-ion batteries:
Model predictive control, lithium plating detection,
and lifelong parameter updates. IEEE Transactions on
Industry Applications.
O’Kane, S. E., Ai, W., Madabattula, G., Alonso-Alvarez,
D., Timms, R., Sulzer, V., Edge, J. S., Wu, B., Offer,
G. J., and Marinescu, M. (2022). Lithium-ion battery
degradation: how to model it. Physical Chemistry
Chemical Physics, 24(13):7909–7922.
O’Kane, S. E., Campbell, I. D., Marzook, M. W., Offer,
G. J., and Marinescu, M. (2020). Physical origin of the
differential voltage minimum associated with lithium
plating in li-ion batteries. Journal of The Electrochem-
ical Society, 167(9):090540.
Plett, G. L. (2004). Extended kalman filtering for battery
management systems of lipb-based hev battery packs:
Part 3. state and parameter estimation. Journal of
Power sources, 134(2):277–292.
Qin, Y., Zuo, P., Chen, X., Yuan, W., Huang, R., Yang, X.,
Du, J., Lu, L., Han, X., and Ouyang, M. (2022). An
ultra-fast charging strategy for lithium-ion battery at
low temperature without lithium plating. Journal of
Energy Chemistry, 72:442–452.
Sulzer, V., Marquis, S. G., Timms, R., Robinson, M., and
Chapman, S. J. (2021). Python battery mathemati-
cal modelling (pybamm). Journal of Open Research
Software, 9(1).
Tomaszewska, A., Chu, Z., Feng, X., O’kane, S., Liu, X.,
Chen, J., Ji, C., Endler, E., Li, R., Liu, L., et al. (2019).
Lithium-ion battery fast charging: A review. ETrans-
portation, 1:100011.
Van Den Bossche, P. (2010). Iec 61851-1: Electric vehicle
conductive charging system-part 1: General require-
ments. In 2, pages 1–99. Iec.
Wächter, A. and Biegler, L. T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106:25–57.
Wassiliadis, N., Kriegler, J., Gamra, K. A., and Lienkamp,
M. (2023). Model-based health-aware fast charging
to mitigate the risk of lithium plating and prolong the
cycle life of lithium-ion batteries in electric vehicles.
Journal of Power Sources, 561:232586.
Health-Aware Charging of Li-Ion Batteries Using MPC and Bayesian Degradation Models
45