diamond/Cu/CNT tri-layer during thermal cycles.
International Journal of Thermal Sciences, 207C,
109380. https://doi.org/10.1016/j.ijthermalsci.2024.109
380
Churchill, S. W., & Chu, H. H. S. (1975). Correlating
equations for laminar and turbulent free convection from
a horizontal cylinder. International Journal of Heat and
Mass Transfer, 18, 1323–1329. https://doi.org/10.1016/0
017-9310(75)90222-7.
Cui, Z. Y., Fan, J. T., & Wu, Y. S. (2016). A comparative
study on the effects of air gap wind and walking motion
on the thermal properties of Arabian Thawbs and
Chinese Cheongsams. Ergonomics, 59(8), 999–1008.
https://doi.org/10.1080/00140139.2015.1111428.
Domenico, I. D., Hoffmann, S. M., & Collins, P. K. (2022).
The role of sports clothing in thermoregulation,
comfort, and performance during exercise in the heat:
A narrative review. Sports Medicine – Open, 8, 58.
https://doi.org/10.1186/s40798-022-00449-4.
Douzi, W., Dupuy, O., Theurot, D., et al. (2020). Per-
cooling (using cooling systems during physical
exercise) enhances physical and cognitive performance
in hot environments: A narrative review. International
Journal of Environmental Research and Public Health,
17, 1031. https://doi.org/10.3390/ijerph17031031.
Fan, J. T., & Tsang, H. W. K. (2008). Effect of clothing
thermal properties on the thermal comfort sensation
during active sports. Textile Research Journal, 78(2),
111–118. https://doi.org/10.1177/0040517508080046.
Gibson, P. (2009). Modeling heat and mass transfer from
fabric-covered cylinders. Journal of Engineered Fibers
and Fabrics, 4(1), 1–8. https://doi.org/10.1177/1558925
00900400102.
Hilpert, R. (1933). Heat transfer from cylinders.
Ingenieurwes, 4, 215.
Hu, S. R., Zhao, M. M., & Li, J. (2016). Effects of wind
direction on sportswear thermal insulation with various
ease allowance. International Journal of Clothing
Science and Technology, 28(4), 492–502.
https://doi.org/10.1108/IJCST-11-2015-0126.
Kumar, C. B. S., & Kumar, B. S. (2022). Study on thermal
comfort properties of Eri silk knitted fabrics for
sportswear application. Journal of Natural Fibers,
19(14), 9052–9063. https://doi.org/10.1080/15440478.2
021.1982110.
Kumar, D. V., & Raja, D. (2021). Study of thermal comfort
properties on socks made from recycled polyester/virgin
cotton and its blends. Fibers and Polymers, 22(3), 841–
846. https://doi.org/10.1007/s12221-021-0471-6.
Li, X. R., Mao, J. Q. and Zhou, P. (2025). Aerodynamic and
Acoustic Evaluation of a Cylinder Covered by Stretched
Grooved Fabric. AIAA Journal, https://doi.org/10.25
14/1.J065006.
Lu, Y. H., Wang, F. M., Peng, H., et al. (2016). Effect of
sweating set rate on clothing real evaporative resistance
determined on a sweating thermal manikin in a so-
called isothermal condition (T
manikin
= T
a
= T
r
).
International Journal of Biometeorology, 60, 481–488.
http://dx.doi.org/10.1007/s00484-015-1029-3.
Mukhopadhyay, A., Preet, A., & Midha, V. (2018). Moisture
transmission behavior of individual component and
multi-layered fabric with sweat and pure water. The
Journal of The Textile Institute, 109(3), 383–392.
https://doi.org/10.1080/00405000.2017.1348435.
Noshrodkoli, M. R., Mousazadegana, F., Gharehaghaji, A.,
et al. (2024). How porosity of the middle layer can affect
the comfort properties of multi-layer sportswear. The
Journal of The Textile Institute. https://doi.org/10.1080/
00405000.2024.2351668.
Özkan, E. T., Kaplangiray, B., Şekir, U., et al. (2023).
Investigation of the thermal comfort of the sportswear by
standing thermal manikin and thermal imaging
techniques. Journal of Engineered Fibers and Fabrics,
18, 1–12. https://doi.org/10.1177/15589250231180248.
Preet, A., Mukhopadhyay, A., & Midha, V. K. (2023). Impact
of varying lactate concentration in sweat on thermo-
physiological comfort of multi-layered ensembles.
International Journal of Clothing Science and
Technology, 35(2), 266–276. https://doi.org/10.1108/
IJCST-12-2021-0176.
Reilly, T., Drust, B., & Gregson, W. (2006).
Thermoregulation in elite athletes. Current Opinion in
Clinical Nutrition and Metabolic Care, 9(6), 666–671.
https://doi.org/10.1097/01.mco.0000247475.95026.a5.
Saeed, M. A., Safdar, F., Basit, A., et al. (2022).
Development of thermally comfortable clothing for hot
and humid environment. Journal of Natural Fibers,
19(14), 7674–7686. https://doi.org/10.1080/15440478.2
021.1958404.
Sobera, M. P., Kleijn, C. R., & Van den Akker, H. E. A.
(2003). Convective heat and mass transfer to a cylinder
sheathed by a porous layer. AIChE Journal, 49(12),
3018–3028. https://doi.org/10.1002/aic.690491204.
Tamsaki, A., David, T., & David, S. (2023). Measuring
convective heat transfer coefficients and thermal
resistance for protective fabrics using a heated cylinder
in a wind tunnel. The Journal of The Textile Institute,
114(12), 1909–1917. https://doi.org/10.1080/004050
00.2022.2150956.
Tesinova, P., & Atalie, D. (2022). Thermal comfort
properties of sport fabrics with dependency on structure
parameters and maintenance. Fibers and Polymers,
23(4), 1150–1160. https://doi.org/10.1007/s12221-022-
4160-x.
Wang, F. M., Ferraro, S., Lin, L. Y., et al. (2012). Localised
boundary air layer and clothing evaporative resistances
for individual body segments. Ergonomics, 55(7), 799–
812. https://doi.org/10.1080/00140139.2012.668948.
Wang, F. M., Lai, D. D., Shi, W., et al. (2017). Effects of
fabric thickness and material on apparent ‘wet’
conductive thermal resistance of knitted fabric ‘skin’ on
sweating manikins. Journal of Thermal Biology, 70, 69–
76. http://dx.doi.org/10.1016/j.jtherbio.2017.03.004.
Zheng, C. T., Zhou, P., Zhong, S. Y., et al. (2021). An
experimental investigation of drag and noise reduction
from a circular cylinder using longitudinal grooves.
Physics of Fluids, 33, 115110. https://doi.org/10.1063/
5.0070959.
Zheng, C. T., Zhou, P., Zhong, S. Y., et al. (2023). On the
cylinder noise and drag reductions in different Reynolds
number ranges using surface pattern fabrics. Physics of
Fluids, 35, 035111. https://doi.org/10.1063/5.0138074.