
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4700–4708.
Jazi, M. and Ben-Gal, I. (2024). Federated learning for
xss detection: A privacy-preserving approach. In Pro-
ceedings of the 16th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management - Volume 1: KDIR, pages
283–293. INSTICC, SciTePress.
Jeong, E., Oh, S., Kim, S., Kang, J., Kim, J.-S., and Lee,
S.-E. (2019). Communication-efficient on-device ma-
chine learning: Federated distillation and augmenta-
tion under non-iid private data. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 5713–5720.
Kairouz, P., McMahan, H. B., et al. (2019). Advances and
open problems in federated learning. Foundations and
Trends in Machine Learning, 14(1–2):1–210.
Kone
ˇ
cn
`
y, J., McMahan, B., Ramage, D., et al. (2015). Fed-
erated optimization: Distributed optimization beyond
the datacenter. arXiv preprint arXiv:1511.03575.
Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical Report,
University of Toronto.
Lalitha, A., Javidi, T., and Koushanfar, F. (2019). Fully
decentralized federated learning. In 2019 53rd Asilo-
mar Conference on Signals, Systems, and Computers,
pages 582–586. IEEE.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020a).
Fedmd: Heterogeneous federated learning via model
distillation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3542–3549.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020b).
Fedprox: A scalable federated learning framework
with heterogeneity. arXiv preprint arXiv:1812.06127.
Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. (2020c). Federated optimization in het-
erogeneous networks. Proceedings of Machine Learn-
ing and Systems, 2:429–450.
Liu, P., Xu, X., and Wang, W. (2022). Threats, attacks and
defenses to federated learning: Issues, taxonomy and
perspectives. Cybersecurity, 5(1):1–19.
Lyu, L., Yu, H., Ma, X., Chen, C., Sun, L., Zhao, J., Yang,
Q., and Yu, S. (2022). Privacy and robustness in fed-
erated learning: Attacks and defenses. IEEE Transac-
tions on Neural Networks and Learning Systems.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Aguera y Arcas, B. (2017). Communication-efficient
learning of deep networks from decentralized data. In
Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), vol-
ume 54, pages 1273–1282. PMLR.
McMahan, H. B., Moore, E., Ramage, D., et al. (2016).
Federated averaging: Communication-efficient learn-
ing of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629.
Mishchenko, K., Khaled, A., and Richtarik, P. (2021). Dis-
tributed stochastic gradient tracking methods. Journal
of Machine Learning Research, 22(153):1–54.
Ouyang, X., Xie, Z., Zhou, J., Huang, J., and Xing, G.
(2021). Clusterfl: A similarity-aware federated learn-
ing system for human activity recognition. In Pro-
ceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, pages
54–66.
Sattler, F., M
¨
uller, K.-R., and Samek, W. (2020). Clustered
federated learning: Model-agnostic distributed mul-
titask optimization under privacy constraints. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 32(8):3710–3722.
Sery, T., Shlezinger, N., Cohen, K., and Eldar, Y. C.
(2021). Over-the-air federated learning from hetero-
geneous data. IEEE Transactions on Signal Process-
ing, 69:3796–3811.
Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A.
(2017). Federated multi-task learning. Advances in
Neural Information Processing Systems, 30.
Tang, H., Dube, X., Wang, S., Joshi, G., and Kar, S. (2018).
D2: Decentralized training over decentralized data.
In International Conference on Learning Representa-
tions (ICLR).
Yang, L., Huang, J., Lin, W., and Cao, J. (2023). Person-
alized federated learning on non-iid data via group-
based meta-learning. ACM Transactions on Knowl-
edge Discovery from Data, 17(4):1–20.
Yoshida, N., Nishio, T., Morikura, M., Yamamoto, K.,
and Yonetani, R. (2020). Hybrid-fl for wireless net-
works: Cooperative learning mechanism using non-iid
data. In ICC 2020 - IEEE International Conference on
Communications, pages 1–7. IEEE.
Zang, M., Zheng, C., Koziak, T., Zilberman, N., and
Dittmann, L. (2024). Federated in-network machine
learning for privacy-preserving iot traffic analysis.
ACM Transactions on Internet Technology, 24(4):1–
24.
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. (2018). Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582.
Zhu, H., Xu, J., Liu, S., and Jin, Y. (2021). Federated
learning on non-iid data: A survey. Neurocomputing,
465:371–390.
KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval
256