
Amjad, H., Ashraf, M. S., Sherazi, S. Z. A., et al.
(2023). Attention-Based Explainability Approaches
in Healthcare Natural Language Processing. In Pro-
ceedings of the International Conference on Health
Informatics (HEALTHINF), pages 689–696.
Atanasova, P., Simonsen, J. G., Lioma, C., and Augenstein,
I. (2020). Generating Fact Checking Explanations. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7352–
7364, Online. Association for Computational Linguis-
tics.
Augenstein, I., Lioma, C., Wang, D., Chaves Lima, L.,
Hansen, C., Hansen, C., and Simonsen, J. G. (2019).
MultiFC: A Real-World Multi-Domain Dataset for
Evidence-Based Fact Checking of Claims. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4685–4697, Hong
Kong, China. Association for Computational Linguis-
tics.
Barai, B., Chakraborty, T., Das, N., Basu, S., and Nasipuri,
M. (2022). Closed-Set Speaker Identification Using
VQ and GMM Based Models. International Journal
of Speech Technology, 25(1):173–196.
Binti Kasim, F. A., Pheng, H. S., Binti Nordin, S. Z., and
Haur, O. K. (2021). Gaussian Mixture Model - Expec-
tation Maximization Algorithm for Brain Images. In
2021 2nd International Conference on Artificial Intel-
ligence and Data Sciences (AiDAS), pages 1–5.
Chen, J., Bao, Q., Sun, C., et al. (2022). Loren: Logic-
regularized reasoning for interpretable fact verifica-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 10482–10491.
Dai, S. C., Hsu, Y. L., Xiong, A., and Ku, L. W. (2022).
Ask to Know More: Generating Counterfactual Ex-
planations for Fake Claims. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2800–2810.
Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazar
´
e, P.-E., Lomeli, M., Hosseini, L., and J
´
egou, H.
(2024). The FAISS Library. CoRR, abs/2401.08281.
Jiao, Z., Ji, Y., Gao, P., and Wang, S. H. (2023). Extraction
and Analysis of Brain Functional Statuses for Early
Mild Cognitive Impairment Using Variational Auto-
Encoder. Journal of Ambient Intelligence and Human-
ized Computing, pages 1–12.
Kotonya, N. and Toni, F. (2020a). Explainable Automated
Fact-Checking: A Survey. In 28th International Con-
ference on Computational Linguistics, Proceedings of
the Conference (COLING), pages 5430–5443. Online.
Kotonya, N. and Toni, F. (2020b). Explainable Automated
Fact-Checking for Public Health Claims. In Webber,
B., Cohn, T., He, Y., and Liu, Y., editors, Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7740–
7754, Online. Association for Computational Linguis-
tics.
Krishna, A., Riedel, S., and Vlachos, A. (2022). ProoFVer:
Natural Logic Theorem Proving for Fact Verification.
Transactions of the Association for Computational
Linguistics, 10:1013–1030.
Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-
augmented generation for knowledge-intensive NLP
tasks. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems
(NIPS ’20). Curran Associates Inc.
Moondra, A. and Chahal, P. (2023). Speaker Recogni-
tion Improvement for Degraded Human Voice Using
Modified-MFCC with GMM. International Journal of
Advanced Computer Science and Applications, 14(6).
Moradi, M. and Samwald, M. (2021). Post-hoc explana-
tion of black-box classifiers using confident itemsets.
Expert Systems with Applications, 165:113941.
Popat, K., Mukherjee, S., Yates, A., and Weikum, G.
(2018). Declare: Debunking fake news and false
claims using evidence-aware deep learning. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2018,
pages 22–32.
Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence Embeddings Using Siamese BERT-Networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why
Should I Trust You?” Explaining the Predictions of
Any Classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1135–1144.
Shu, K., Cui, L., Wang, S., Lee, D., and Liu, H. (2019).
dEFEND: Explainable Fake News Detection. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’19, page 395–405, New York, NY, USA. Asso-
ciation for Computing Machinery.
Singhal, R., Patwa, P., Patwa, P., Chadha, A., and Das, A.
(2024). Evidence-backed Fact Checking using RAG
and Few-Shot In-Context Learning with LLMs. In
Proceedings of the Seventh Workshop on Fact Extrac-
tion and VERification (FEVER). Association for Com-
putational Linguistics.
Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal,
A. (2018). FEVER: a Large-scale Dataset for Fact Ex-
traction and VERification. In Proceedings of the 2018
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 809–819, New Orleans,
Louisiana. Association for Computational Linguistics.
Touvron, H., Martin, L., Stone, K., et al.
(2023). LLAMa-2: Open foundation and
fine-tuned chat models. Retrieved from
https://ai.meta.com/research/publications/llama-
2-open-foundation-and-fine-tuned-chat-models/.
Vallayil, M., Nand, P., and Yan, W. Q. (2024). Explain-
able AI through Thematic Clustering and Contextual
Visualization: Advancing Macro-Level Explainability
in AFV Systems. In ACIS 2024 Proceedings, number
101 in ACIS Proceedings Series.
KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval
76