expand different application scenarios. This will
further improve the accuracy, robustness, and
application value of medical image segmentation and
provide strong support for precision medicine and
personalized treatment.
REFERENCES
Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-
Schneider, A., Landman, B. A., ... & Cardoso, M. J.,
2022. The medical segmentation decathlon. Nature
Communications, 13(1), 4128.
Canny, J., 1986. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (6), 679-698.
Chen, Z., 2023. Medical Image Segmentation Based on U-
Net. In Journal of Physics: Conference Series (Vol.
2547, No. 1, p. 012010). IOP Publishing.
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., &
Ronneberger, O., 2016. 3D U-Net: learning dense
volumetric segmentation from sparse annotation. In
Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2016: 19th International
Conference, Athens, Greece, October 17-21, 2016,
Proceedings, Part II 19 (pp. 424-432). Springer
International Publishing.
Felfeliyan, B., Hareendranathan, A., Kuntze, G., Jaremko,
J. L., & Ronsky, J. L., 2022. Improved-Mask R-CNN:
Towards an accurate generic MSK MRI instance
segmentation platform (data from the Osteoarthritis
Initiative). Computerized Medical Imaging and
Graphics, 97, 102056.
He, K., Gkioxari, G., Dollár, P., & Girshick, R., 2017. Mask
R-CNN. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 2961-2969).
Ilhan, U., & Ilhan, A., 2017. Brain tumor segmentation
based on a new threshold approach. Procedia Computer
Science, 120, 580-587.
Javadpour, A., & Mohammadi, A., 2016. Improving brain
magnetic resonance image (MRI) segmentation via a
novel algorithm based on genetic and regional growth.
Journal of Biomedical Physics & Engineering, 6(2), 95.
Jeong, J., Lei, Y., Kahn, S., Liu, T., Curran, W. J., Shu, H.
K., ... & Yang, X., 2020. Brain tumor segmentation
using 3D Mask R-CNN for dynamic susceptibility
contrast enhanced perfusion imaging. Physics in
Medicine & Biology, 65(18), 185009.
Jimenez-Carretero, D., Bermejo-Peláez, D., Nardelli, P.,
Fraga, P., Fraile, E., Estépar, R. S. J., & Ledesma-
Carbayo, M. J., 2019. A graph-cut approach for
pulmonary artery-vein segmentation in noncontrast CT
images. Medical Image Analysis, 52, 144-159.
Long, J., Shelhamer, E., & Darrell, T., 2015. Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 3431-3440).
Lu, F., Tang, C., Liu, T., Zhang, Z., & Li, L., 2023. Multi-
attention segmentation networks combined with the
Sobel operator for medical images. Sensors, 23(5),
2546.
Maolood, I. Y., Al-Salhi, Y. E. A., & Lu, S., 2018.
Thresholding for medical image segmentation for
cancer using fuzzy entropy with level set algorithm.
Open Medicine, 13(1), 374-383.
Marr, D., & Hildreth, E., 1980. Theory of edge detection.
Proceedings of the Royal Society of London. Series B.
Biological Sciences, 207(1167), 187-217.
Micallef, N., Seychell, D., & Bajada, C. J., 2021. Exploring
the U-Net++ model for automatic brain tumor
segmentation. IEEE Access, 9, 125523-125539.
Otsu, N., 1975. A threshold selection method from gray-
level histograms. Automatica, 11(285-296), 23-27.
Ren, S., He, K., Girshick, R., & Sun, J., 2016. Faster R-
CNN: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6), 1137-1149.
Ronneberger, O., Fischer, P., & Brox, T., 2015. U-Net:
Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18 (pp. 234-241).
Springer International Publishing.
Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni,
V., 2021. U-Net and its variants for medical image
segmentation: A review of theory and applications.
IEEE Access, 9, 82031-82057.
Shu, J. H., Nian, F. D., Yu, M. H., & Li, X., 2020. An
improved Mask R-CNN model for multiorgan
segmentation. Mathematical Problems in Engineering,
2020(1), 8351725.
Sobel, I., 1978. Neighborhood coding of binary images for
fast contour following and general binary array
processing. Computer Graphics and Image Processing,
8(1), 127-135.
Wang, J., & Liu, X., 2021. Medical image recognition and
segmentation of pathological slices of gastric cancer
based on Deeplab v3+ neural network. Computer
Methods and Programs in Biomedicine, 207, 106210.
Zhang, Z., Fu, H., Dai, H., Shen, J., Pang, Y., & Shao, L.,
2019. ET-Net: A generic edge-attention guidance
network for medical image segmentation. In Medical
Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International
Conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part I 22 (pp. 442-450). Springer
International Publishing.