
Berry, M. J., Pollock, W. E., Van Nieuwenhuizen, K., and
Brubaker, P. H. (1994). A comparison between aero
and standard racing handlebars during prolonged ex-
ercise. Int J sports Med, 15(01):16–20.
Bini, R. R., Daly, L., and Kingsley, M. (2019). Muscle force
adaptation to changes in upper body position during
seated sprint cycling. J Sports Sci, 37(19):2270–2278.
Borg, G. A. (1982). Psychophysical bases of perceived ex-
ertion. Med Sci Sports Exerc, 14(5):377–381.
Brand, A., Sepp, T., Kl
¨
opfer-Kr
¨
amer, I., M
¨
ußig, J. A.,
Kr
¨
oger, I., Wackerle, H., and Augat, P. (2020). Up-
per body posture and muscle activation in recreational
cyclists: Immediate effects of variable cycling setups.
Res Q Exerc Sport, 91(2):298–308.
Burden, A. and Bartlett, R. (1999). Normalisation of emg
amplitude: an evaluation and comparison of old and
new methods. Med Eng Phys, 21(4):247–257.
Cartier, T., Vigouroux, L., Viehweger, E., and Rao, G.
(2022). Subject specific muscle synergies and me-
chanical output during cycling with arms or legs.
PeerJ, 10:e13155.
Chapman, A. R., Vicenzino, B., Blanch, P., Knox, J. J.,
Dowlan, S., and Hodges, P. W. (2008). The influence
of body position on leg kinematics and muscle recruit-
ment during cycling. J Sci Med Sport, 11(6):519–526.
Dettori, N. J. and Norvell, D. C. (2006). Non-traumatic
bicycle injuries: a review of the literature. Sports Med,
36(1):7–18.
Dorel, S., Couturier, A., and Hug, F. (2009). Influence
of different racing positions on mechanical and elec-
tromyographic patterns during pedalling. Scand J Med
Sci Sports, 19(1):44–54.
Ehrgott, M. (2005). Multicriteria optimization, volume 491.
Springer Science & Business Media.
Faria, E. W., Parker, D. L., and Faria, I. E. (2005). The sci-
ence of cycling: factors affecting performance—part
2. Sports Med, 35:313–337.
Faulkner, S. H. and Jobling, P. (2020). The effect of upper-
body positioning on the aerodynamic–physiological
economy of time-trial cycling. Int J Sports Physiol
Perform, 16(1):51–58.
Faulkner, S. H., Jobling, P., Griggs, K. E., and Siegkas,
P. (2024). Individual aerodynamic and physiological
data are critical to optimise cycling time trial perfor-
mance: one size does not fit all. Sports Eng, 27(1):4.
Fintelman, D., Sterling, M., Hemida, H., and Li, F. (2014).
Optimal cycling time trial position models: aerody-
namics versus power output and metabolic energy. J
Biomech, 47(8):1894–1898.
Fintelman, D., Sterling, M., Hemida, H., and Li, F. (2015).
The effect of time trial cycling position on physi-
ological and aerodynamic variables. J Sports Sci,
33(16):1730–1737.
Ghasemi, M., Curnier, D., Caru, M., Tr
´
epanier, J.-Y., and
P
´
eri
´
e, D. (2022). The effect of different aero handlebar
positions on aerodynamic and gas exchange variables.
J Biomech, 139:111128.
Giljarhus, K. E. T., Stave, D.
˚
A., and Oggiano, L. (2020).
Investigation of influence of adjustments in cyclist
arm position on aerodynamic drag using computa-
tional fluid dynamics. Proc, 49(1):159.
Huang, H. J. and Ferris, D. P. (2009). Upper and lower
limb muscle activation is bidirectionally and ipsilater-
ally coupled. Med Sci Sports Exerc, 41(9):1778.
Ingraham, K. A., Ferris, D. P., and Remy, C. D. (2019).
Evaluating physiological signal salience for estimat-
ing metabolic energy cost from wearable sensors. J
Applied Physiology, 126(3):717–729.
Kordi, M., Fullerton, C., Passfield, L., and Parker Simpson,
L. (2019). Influence of upright versus time trial cy-
cling position on determination of critical power and
w in trained cyclists. Eur J Sport Sci, 19(2):192–198.
Mao, J., Zhou, P., Liu, G., Zhong, S., Huang, X., and Zhang,
X. (2024). The influence of crosswinds and leg posi-
tions on cycling aerodynamics. Exp Fluids, 65(6):85.
Martin, J. C., Gardner, A. S., Barras, M., and Martin, D. T.
(2006). Modeling sprint cycling using field-derived
parameters and forward integration. Med Sci Sports
Exerc, 38(3):592–597.
Pareto, V. (1919). Manuale di economia politica con una
introduzione alla scienza sociale, volume 13. Societ
`
a
Editrice Libraria.
Savelberg, H. H. C. M., Van de Port, I. G. L., and Willems,
P. J. B. (2003). Body configuration in cycling affects
muscle recruitment and movement pattern. J Appl
Biomech, 19(4):310–324.
Schwellnus, M. P. and Derman, E. W. (2005). Common in-
juries in cycling: Prevention, diagnosis and manage-
ment. S Afr Fam Pract, 47(7):14–19.
So, R. C., Ng, J. K. F., and Ng, G. Y. F. (2005). Muscle
recruitment pattern in cycling: a review. Phys Ther
Sport, 6(2):89–96.
Stegeman, D. and Hermens, H. (2007). Standards for sur-
face electromyography: The european project sur-
face emg for non-invasive assessment of muscles (se-
niam). Enschede: Roessingh Research and Develop-
ment, 10(8).
Turpin, N. A., Costes, A., Moretto, P., and Watier, B.
(2017). Upper limb and trunk muscle activity pat-
terns during seated and standing cycling. J Sports Sci,
35(6):557–564.
Umberger, B. R., Scheuchenzuber, H. J., and Manos, T. M.
(1998). Differences in power output during cycling at
different seat tube angles. J Hum Mov Stud, 35(1):21–
36.
icSPORTS 2025 - 13th International Conference on Sport Sciences Research and Technology Support
56