Weather forecasting and prediction using hybrid C5.0
machine learning algorithm. International Journal of
Communication Systems, 34. https://doi.org/10.
1002/dac.4805.
Bindhu, V. (2020). Design and Development of Automatic
Micro Controller based Weather Forecasting Device.
Journal of Electronics and Informatics. 2020.
https://doi.org/10.36548/jei.2020.1.001.
Bouallègue, Z., Cooper, F., Chantry, M., Düben, P.,
Bechtold, P., & Sandu, I. (2023). Statistical Modelling
of 2m Temperature and 10m Wind Speed Forecast
Errors. Monthly Weather Review. https://doi.org/10.
1175/mwr-d-22-0107.1.
Boukabara, S., Krasnopolsky, V., Stewart, J., Maddy, E.,
Shahroudi, N., & Hoffman, R. (2020). Realizing the
Benefits of AI across the Numerical Weather Prediction
Value Chain. Bulletin of the American Meteorological
Society. https://doi.org/10.1175/BAMS-D-18-0324.A.
Dong, R., Leng, H., Zhao, C., Song, J., Zhao, J., & Cao, X.
(2023). A hybrid data assimilation system based on
machine learning. Frontiers in Earth Science 10.
https://doi.org/10.3389/feart.2022.1012165.
Gao, M., Hugenholtz, C.H., Fox, T.A. et al. Weather
constraints on global drone flyability. Scientific Reports
11, 12092 (2021). https://doi.org/10.1038/s41598-021-
91325-w
Ghirardelli, J., & Glahn, B. (2010). The Meteorological
Development Laboratory’s Aviation Weather
Prediction System. Weather and Forecasting, 25, 1027-
1051. https://doi.org/10.1175/2010WAF2222312.1
Joshi, V., Jadhav, P. (2024). A Comprehensive Study on
Weather Predicting Automation Bot Using Automation
Software and Machine Learning. 2024 Asia Pacific
Conference on Innovation in Technology (APCIT), 1-6.
https://doi.org/10.1109/APCIT62007.2024.10673441.
Lombardi, M., Sladek, D., Simone F., Patriarca, R. (2025).
No more flying blind: Leveraging weather forecasting
for clear-cut risk-based decisions. Online.
Transportation Research Interdisciplinary
Perspectives., Vol. 30. ISSN 25901982. https://doi.org/
10.1016/j.trip.2025.101349
NCEP GFS 0.25 Degree Global Forecast Grids Historical
Archive. Research Data Archive at the National Center
for Atmospheric Research. (2015). In NCEP GFS 0.25
Degree Global Forecast Grids Historical Archive.
National Centers for Environmental
Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, Computational and
Information Systems Laboratory
Patriarca, R., Simone, F., & Di Gravio, G. (2023).
Supporting weather forecasting performance
management at aerodromes through anomaly detection
and hierarchical clustering. Expert Systems with
Applications, 213(Part C), 119210. https://doi.org/10.
1016/j.eswa.2022.119210
Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., &
Wang, X. (2021). Deep Learning-Based Weather
Prediction: A Survey. Big Data Research, 23, 100178.
https://doi.org/10.1016/j.bdr.2020.100178
Rio, J., Silva, P., Novo, I. (2019). Automatic Forecasts
Algorithms. Sexto Simposio Nacional de Predicción
"Memorial Antonio Mestre". https://doi.org/10.31978/
639-19-010-0.187.
Sengoz, C., Ramanna, S., Kehler, S., Goomer, R., & Pries,
P. (2023). Machine Learning Approaches to Improve
North American Precipitation Forecasts. IEEE Access,
11, 97664-97681. https://doi.org/10.1109/ACCESS.
2023.3309054.
Simone, F., Di Gravio, G., & Patriarca, R. (2022).
Performance-based analysis of aerodrome weather
forecasts. In 2022 New Trends in Civil Aviation (NTCA)
(pp. 27–33). IEEE. https://doi.org/10.23919/
NTCA55899.2022.9934004
Wang, Y., Ni, K., Wang, X., & Zhu, J. (2022). Design of
Automatic Weather Monitoring and Forecasting
System based on Internet of Things and Big Data. 2022
International Conference on Sustainable Computing
and Data Communication Systems (ICSCDS), 979-
982. https://doi.org/10.1109/ICSCDS53736.2022.9761
041
Wang, Y., Kim, S., Lyu, G., Lee, C., Lee, G., Min, K., &
Kafatos, M. (2023). Relative Importance of Radar
Variables for Nowcasting Heavy Rainfall: A Machine
Learning Approach. IEEE Transactions on Geoscience
and Remote Sensing, 61, 1-14. https://doi.
org/10.1109/TGRS.2022.3231125.
Weyn, J., Durran, D., & Caruana, R. (2020). Improving
Data‐Driven Global Weather Prediction Using Deep
Convolutional Neural Networks on a Cubed Sphere.
Journal of Advances in Modeling Earth Systems, 12.
https://doi.org/10.1029/2020MS002109.
Zhong, X., Yao, Y., Xu, L., Wu, Y., & Wang, Z. (2023).
WRF–ML v1.0: a bridge between WRF v4.3 and
machine learning parameterizations and its application
to atmospheric radiative transfer. Geoscientific Model
Development. https://doi.org/10.5194/gmd-16-199-
2023.