
REFERENCES
Bahloul, R., Arfa, H., and Salah, H. B. (2013). Application
of response surface analysis and genetic algorithm for
the optimization of single point incremental forming
process. Key Engineering Materials, 554:1265–1272.
Belytschko, T. and Hodge Jr, P. G. (1970). Plane stress limit
analysis by finite elements. Journal of the Engineering
Mechanics Division, 96(6):931–944.
Bingqian, Y., Zeng, Y., Yang, H., Oscoz, M. P., Ortiz, M.,
Coenen, F., and Nguyen, A. (2024). Springback pre-
diction using point series and deep learning. The In-
ternational Journal of Advanced Manufacturing Tech-
nology, 132(9):4723–4735.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152.
Canny, J. (2009). A computational approach to edge de-
tection. IEEE Transactions on pattern analysis and
machine intelligence, (6):679–698.
Chen, D., Coenen, F., Hai, Y., Oscoz, M. P., and Nguyen, A.
(2023). Springback prediction using gated recurrent
unit and data augmentation. In International Confer-
ence on Mechatronics and Intelligent Robotics, pages
1–13. Springer.
Duda, R. O. and Hart, P. E. (1972). Use of the hough trans-
formation to detect lines and curves in pictures. Com-
munications of the ACM, 15(1):11–15.
El-Salhi, S., Coenen, F., Dixon, C., and Khan, M. S. (2012).
Identification of correlations between 3d surfaces us-
ing data mining techniques: Predicting springback in
sheet metal forming. In International Conference on
Innovative Techniques and Applications of Artificial
Intelligence, pages 391–404. Springer.
El-Salhi, S., Coenen, F., Dixon, C., and Khan, M. S.
(2013). Predicting features in complex 3d surfaces
using a point series representation: a case study in
sheet metal forming. In International Conference on
Advanced Data Mining and Applications, pages 505–
516. Springer.
Fix, E. (1985). Discriminatory analysis: nonparamet-
ric discrimination, consistency properties, volume 1.
USAF school of Aviation Medicine.
Gill, P. E., Murray, W., and Wright, M. H. (2021). Numeri-
cal linear algebra and optimization. SIAM.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.
Harris, C., Stephens, M., et al. (1988). A combined corner
and edge detector. In Alvey vision conference, vol-
ume 15, pages 10–5244. Manchester, UK.
He, J., Cu, S., Xia, H., Sun, Y., Xiao, W., and Ren, Y.
(2025). High accuracy roll forming springback predic-
tion model of svr based on sa-pso optimization. Jour-
nal of Intelligent Manufacturing, 36(1):167–183.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Holland, J. H. (1975). An introductory analysis with appli-
cations to biology, control, and artificial intelligence.
Adaptation in Natural and Artificial Systems. First
Edition, The University of Michigan, USA.
Khan, M. S., Coenen, F., Dixon, C., and El-Salhi, S. (2012).
Classification based 3-d surface analysis: predicting
springback in sheet metal forming. Journal of Theo-
retical and Applied Computer Science, 6(2):45–59.
Khan, M. S., Coenen, F., Dixon, C., El-Salhi, S., Penalva,
M., and Rivero, A. (2015). An intelligent process
model: predicting springback in single point incre-
mental forming. The International Journal of Ad-
vanced Manufacturing Technology, 76(9):2071–2082.
Kingma, D. P., Welling, M., et al. (2013). Auto-encoding
variational bayes.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (2002).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Loh, W.-Y. (2011). Classification and regression trees. Wi-
ley interdisciplinary reviews: data mining and knowl-
edge discovery, 1(1):14–23.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Maji, K. and Kumar, G. (2020). Inverse analysis and
multi-objective optimization of single-point incre-
mental forming of aa5083 aluminum alloy sheet. Soft
Computing, 24(6):4505–4521.
Martins, P., Bay, N., Skjødt, M., and Silva, M. (2008). The-
ory of single point incremental forming. CIRP annals,
57(1):247–252.
Sakoe, H. and Chiba, S. (2003). Dynamic programming
algorithm optimization for spoken word recognition.
IEEE transactions on acoustics, speech, and signal
processing, 26(1):43–49.
Salomon, D. (2006). Curves and surfaces for computer
graphics. Springer.
Sbayti, M., Bahloul, R., and Belhadjsalah, H. (2020). Ef-
ficiency of optimization algorithms on the adjust-
ment of process parameters for geometric accuracy
enhancement of denture plate in single point incre-
mental sheet forming. Neural Computing and Appli-
cations, 32(13):8829–8846.
Seeger, M. (2004). Gaussian processes for machine
learning. International journal of neural systems,
14(02):69–106.
Seo, K.-Y., Kim, J.-H., Lee, H.-S., Kim, J. H., and Kim, B.-
M. (2017). Effect of constitutive equations on spring-
back prediction accuracy in the trip1180 cold stamp-
ing. Metals, 8(1):18.
Serra, J. (1983). Image analysis and mathematical mor-
phology. Academic Press, Inc.
Spathopoulos, S. C. and Stavroulakis, G. E. (2020). Spring-
back prediction in sheet metal forming, based on fi-
nite element analysis and artificial neural network ap-
proach. Applied Mechanics, 1(2):97–110.
Sheet Metal Forming Springback Prediction Using Image Geometrics (SPIG): A Novel Approach Using Heatmaps and Convolutional
Neural Network
37