
ments, thereby enabling the machine-interpretable
specification of EoL policies (RQ2). Our qualita-
tive evaluation with experts validated the relevance of
these requirements and the conceptual soundness of
the ODRL extension, underscoring its potential to en-
hance compliance, trust, and overall data governance.
The primary contribution, therefore, is the for-
malization of EoL policy requirements tailored for
data trustees and a practical vocabulary to imple-
ment them. This approach facilitates more holis-
tic data lifecycle governance by rendering EoL poli-
cies explicit, machine-interpretable, and auditable.
While this work improves policy specification, en-
suring technical enforcement in distributed systems
and establishing robust ecosystem governance remain
challenges. Future work should focus on refining the
eol: vocabulary for data deletion, exploring mecha-
nisms for verifiable EoL execution, and developing
best practices for its integration within data spaces.
As another part of EoL data management involves
not only data deletion but also data retention, future
work could also include the development of a com-
plementary ODRL extension to specify retention poli-
cies. By promoting standardized, expressive policies
for the full scope of EoL data management, encom-
passing both deletion and retention, we aim to further
strengthen data governance and trust in data trustees.
REFERENCES
Bacco, M., Kocian, A., Chessa, S., Crivello, A., and Bar-
socchi, P. (2024). What are data spaces? systematic
survey and future outlook. Data in Brief, 57:110969.
Cantrell, G. and Runs Through, J. (2019). The Five Levels
of Data Destruction: A Paradigm for Introducing Data
Recovery in a Computer Science Course . In 2019
International Conference on Computational Science
and Computational Intelligence (CSCI), pages 133–
138. IEEE Computer Society.
Dam, T., Krimbacher, A., and Neumaier, S. (2023). Policy
patterns for usage control in data spaces.
Eitel, A., Jung, C., Brandst
¨
adter, R., Hosseinzadeh, A.,
Bader, S., K
¨
uhnle, C., Birnstill, P., Brost, G., Gall, M.,
Bruckner, F., Weißenberg, N., and Korth, B. (2021).
Usage control in the international data spaces.
European Commission (2016). Regulation (EU) 2016/679
of the European Parliament and of the Council of 27
april 2016 on the protection of natural persons with
regard to the processing of personal data and on the
free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation).
European Commission (2022). European data governance
act.
European Committee for Standardization (2024). Trusted
data transaction.
Franklin, M., Halevy, A., and Maier, D. (2005). From
databases to dataspaces: a new abstraction for infor-
mation management. SIGMOD Rec., 34(4):27–33.
Gemein, O.-G., Hilberg, S. J., L
¨
ahteenoja, V., and
Turpeinen, M. (2023). Reflections on the dga and data
intermediaries.
Ginart, A., Guan, M. Y., Valiant, G., and Zou, J. (2019).
Making ai forget you: Data deletion in machine learn-
ing.
Iannella, R. and Villata, S. (2018). ODRL information
model 2.2.
Lauf, F., Scheider, S., Friese, J., Kilz, S., Radic, M., and
Burmann, A. (2023). Exploring design character-
istics of data trustees in healthcare - taxonomy and
archetypes. In Proceedings of the 31st European Con-
ference on Information Systems (ECIS).
Lindner, M. and Straub, S. (2023). Datentreuh
¨
anderschaft
status quo und entwicklungsperspektiven. Whitepa-
per, Begleitforschung Smarte Datenwirtschaft.
McKibben, W. B., Cade, R., Purgason, L. L., and and, E. W.
(2022). How to conduct a deductive content analy-
sis in counseling research. Counseling Outcome Re-
search and Evaluation, 13(2):156–168.
Otto, B. (2022). The evolution of data spaces. In Designing
data spaces: The ecosystem approach to competitive
advantage, pages 3–15. Springer International Pub-
lishing Cham.
Otto, B., Steinbuss, S., Teuscher, A., and Lohmann, S.
(2019). IDS Reference Architecture Model. Technical
report, International Data Spaces Association.
Otto, B., ten Hompel, M., and Wrobel, S., editors (2022).
Designing Data Spaces: The Ecosystem Approach to
Competitive Advantage. Springer Nature.
Puppis, M. (2019). Analyzing Talk and Text I: Qualitative
Content Analysis, pages 367–384. Springer Interna-
tional Publishing, Cham.
Reiberg, A., Appelt, D., Smole
´
n, A., and Kraemer, P.
(2023). Datentreuh
¨
ander, datenvermittlungsdienste
und gaia-x. Whitepaper, Gaia-X Hub Deutschland.
Schinke, L., Hoppen, M., Atanasyan, A., Gong, X., Heinze,
F., Stollenwerk, K., and Roßmann, J. (2023). Trustful
data sharing in the forest-based sector - opportunities
and challenges for a data trustee. In VLDB Workshops.
Shaharudin, A., van Loenen, B., and Janssen, M. (2024).
Exploring the contributions of open data intermedi-
aries for a sustainable open data ecosystem. Data &
Policy.
Specht-Riemenschneider, L., Blankertz, A., Sierek, P.,
Schneider, R., Knapp, J., and Henne, T. (2021).
Die Datentreuhand: ein Beitrag zur Modellbildung
und rechtlichen Strukturierung zwecks Identifizierung
der Regulierungserfordernisse f
¨
ur Datentreuhand-
modelle. Number 6 Beilage.
Specht-Riemenschneider, L. and Kerber, W. (2022). De-
signing Data Trustees – A Purpose-Based Approach/
Datentreuh
¨
ander – Ein probleml
¨
osungsorientierter
Ansatz. Konrad-Adenauer-Stiftung e. V.
Stachon, M., M
¨
oller, F., Guggenberger, T., Tomczyk, M.,
and Henning, J.-L. (2023). Understanding data trusts.
In Proceedings of the 31st European Conference on
Information Systems (ECIS).
Enhancing Data Governance in Data Trustees Through ODRL-Based End-of-Life Policies
37