
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh,
Y. (2019). Openpose: Realtime multi-person 2d pose
estimation using part affinity fields.
Capecci, M., Ceravolo, M. G., Ferracuti, F., Iarlori, S.,
Monteri
`
u, A., Romeo, L., and Verdini, F. (2019). The
kimore dataset: Kinematic assessment of movement
and clinical scores for remote monitoring of physi-
cal rehabilitation. IEEE Trans. Neural Syst. Rehabil.
Eng., 27(7):1436–1448.
Chen, C., Jafari, R., and Kehtarnavaz, N. (2015). Utd-mhad:
A multimodal dataset for human action recognition
utilizing a depth camera and a wearable inertial sen-
sor. In Proc. IEEE Int. Conf. Image Process. (ICIP),
pages 168–172.
Chen, J. et al. (2023). Vision transformer with gru for action
recognition in skeleton sequences. Neurocomputing.
Clark, R. A. et al. (2021). The use of wearable technology
and computer vision for movement analysis and injury
prevention in sport. J. Sports Sci., 39(5):533–544.
Dosovitskiy, A. et al. (2020). An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.
Du, X., Li, Y., Cui, Y., Qian, R., Li, J., and Bello, I. (2023).
Revisiting 3d resnets for video recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2889–2899.
Duong-Trung, N., Kotte, H., and Kravcik, M. (2023). Aug-
mented intelligence in tutoring systems: A case study
in real-time pose tracking to enhance the self-learning
of fitness exercises. In Responsive and Sustainable
Educational Futures, pages 705–710. Springer.
Ganesh, P., Idgahi, R., Venkatesh, C., Babu, A., and
Kyrarini, M. (2020). Personalized system for human
gym activity recognition using an rgb camera. In Pro-
ceedings of the 13th ACM International Conference
on PErvasive Technologies Related to Assistive Envi-
ronments, pages 1–7.
Ghorbani, S., Mahdaviani, K., Thaler, A., Kording, K.,
Cook, D. J., Blohm, G., and Troje, N. F. (2021).
Movi: A large multi-purpose human motion and video
dataset. PLOS ONE, 16(6):e0253157.
Hassan, A., Serour, A., Gamea, A., and Gomaa, W. (2025).
Alex-gym-1: A multi-camera dataset for automated
evaluation of exercise form. GitHub. Accessed: 2025-
07-21.
Kaseris, M., Kostavelis, I., and Malassiotis, S. (2024). A
comprehensive survey on deep learning methods in
human activity recognition. Machine Learning and
Knowledge Extraction, 6(2):842–876.
Keogh, J. W. and Winwood, P. W. (2017). The epidemi-
ology of injuries across the weight-training sports.
Sports Med., 47(3):479–501.
Khan, I. U., Afzal, S., and Lee, J. W. (2022). Human activ-
ity recognition via hybrid deep learning-based model.
Sensors, 22(1):323.
Kotte, H., Kravcik, M., and Duong-Trung, N. (2023). Real-
time posture correction in gym exercises: A computer
vision-based approach for performance analysis, error
classification and feedback. International Journal of
Artificial Intelligence in Education.
Neha, D. and Manju, D. (2023). Virtual fitness trainer us-
ing artificial intelligence. International Journal for
Research in Applied Science and Engineering Tech-
nology, 11(3):1499–1507.
Sharshar, A., Fayez, A., Eitta, A. A., and Gomaa, W. (2022).
Mm-dos: A novel dataset of workout activities. In
2022 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE.
Wijekoon, A., Wiratunga, N., and Cooper, K. (2019). MEx
[dataset]. https://doi.org/10.24432/C59K6T. UCI Ma-
chine Learning Repository.
Winwood, P. W., Hume, P. A., Cronin, J. B., and Keogh, J.
W. L. (2014). Retrospective injury epidemiology of
strongman athletes. Journal of Strength and Condi-
tioning Research, 28(1):28–42.
Wushao, W., Hefu, S., and Hanxiang, Z. (2000). An epi-
demiological survey and comparative study of the in-
juries in weightlifting. Sports Science, 20(4):44–46.
Youssef, F., Parque, V., and Gomaa, W. (2023). Vcoach:
A virtual coaching system based on visual streaming.
Procedia Computer Science, 222:207–216.
Zhang, C., Liu, L., Yao, M., Chen, W., Chen, D., and Wu, Y.
(2021). Hsipu2: A new human physical fitness action
dataset for recognition and 3d reconstruction evalua-
tion. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), pages 481–489.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
34