
and tele-operated assistive systems.
ACKNOWLEDGEMENTS
This work was supported by the Center for Interdis-
ciplinary Research on Intelligent Manufacturing and
Robotics at King Fahd University of Petroleum &
Minerals, Dhahran, Saudi Arabia, under the research
grant INMR2508, titled ”Adaptive Learning Control
Design for Safe and Efficient Human-Robot Collabo-
ration in Dynamic Industrial Environments”.
REFERENCES
Alcocer, A., Robertsson, A., Valera, A., and Johansson, R.
(2003). Force estimation and control in robot ma-
nipulators. In Robot Control 2003 (SYROCO’03): A
Proceedings Volume from the 7th IFAC Symposium,
page 55, Wrocław, Poland.
Brahmi, B., Dahani, H., Bououden, S., Fareh, R., and Rah-
man, M. H. (2024). Adaptive-robust controller for
smart exoskeleton robot. Sensors, 24(2):489.
Brahmi, B., Laraki, M. H., Saad, M., Rahman, M. H.,
Ochoa-Luna, C., and Brahmi, A. (2019). Compli-
ant adaptive control of human upper-limb exoskeleton
robot with unknown dynamics based on a modified
function approximation technique (mfat). Robotics
and Autonomous Systems, 117:92–102.
Brahmi, B. and Saad, M. (2023). Adaptive control of an
electrically driven exoskeleton robot (theory and ex-
periments). Journal of Vibration Engineering & Tech-
nologies, 11(7):3399–3412.
Chen, W.-H., Ballance, D. J., Gawthrop, P. J., and O’Reilly,
J. (2000). A nonlinear disturbance observer for robotic
manipulators. IEEE Transactions on Industrial Elec-
tronics, 47:932–938.
Chen, X., Wang, N., Cheng, H., and Yang, C. (2020). Neu-
ral learning enhanced variable admittance control for
human–robot collaboration. IEEE Access, 8:25727–
25737.
Culmer, P. R., Jackson, A. E., Makower, S., et al. (2010). A
control strategy for upper limb robotic rehabilitation
with a dual robot system. IEEE/ASME Transactions
on Mechatronics, 15:575–585.
Gupta, A. and O’Malley, M. K. (2011). Disturbance-
observer-based force estimation for haptic feedback.
Journal of Dynamic Systems, Measurement, and Con-
trol, 133:014505.
Hahn, W. et al. (1967). Stability of motion, volume 138.
Springer.
Hogan, N. (1985). Impedance control: An approach to ma-
nipulation—part i: Theory; part ii: Implementation;
part iii: Applications. ASME Journal of Dynamic Sys-
tems, Measurement, and Control, 107(1):1–24.
Hongli, C. (2022). Design of a fuzzy fractional order adap-
tive impedance controller with integer order approxi-
mation for stable robotic contact force tracking in un-
certain environment. Acta Mechanica et Automatica,
16(1):16–26.
Hsu, H.-H., Lee, W.-K., and Lee, P.-L. (2025). Designing
an eeg signal-driven dual-path fuzzy neural network-
controlled pneumatic exoskeleton for upper limb re-
habilitation. International Journal of Fuzzy Systems,
pages 1–19.
Ibarguren, A., Daelman, P., and Prada, M. (2020). Con-
trol strategies for dual arm co-manipulation of flexi-
ble objects in industrial environments. In Proc. IEEE
Conf. Ind. Cyberphysical Syst., pages 514–519, Tam-
pere, Finland.
Iqbal, K. and Zheng, Y. F. (1999). Arm-manipulator coor-
dination for load sharing using predictive control. In
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2539–2544.
Jaroonsorn, P. et al. (2020). Robot-assisted transcranial
magnetic stimulation using hybrid position/force con-
trol. Advanced Robotics, 34(24):1559–1570.
Jung, S. and Hsia, T. C. (2000). Robust neural force control
scheme under uncertainties in robot dynamics and un-
known environment. IEEE Transactions on Industrial
Electronics, 47(2):403–412.
Karimi, M. and Ahmadi, M. (2025). ilead: An emg-based
adaptive shared control framework for exoskeleton as-
sistance via deep reinforcement learning. IEEE Trans-
actions on Artificial Intelligence.
Katsura, S., Matsumoto, Y., and Ohnishi, K. (2007). Mod-
eling of force sensing and validation of disturbance
observer for force control. IEEE Transactions on In-
dustrial Electronics, 54(1):530–538.
Li, M., Wen, Y., Gao, X., Si, J., and Huang, H. (2022a). To-
ward expedited impedance tuning of a robotic prosthe-
sis for personalized gait assistance by reinforcement
learning control. IEEE Transactions on Robotics,
38(1):407–420.
Li, Z., Li, X., Li, Q., Su, H., Kan, Z., and He, W.
(2022b). Human-in-the-loop control of soft exosuits
using impedance learning on different terrains. IEEE
Transactions on Robotics, 38(5):2979–2993.
Lynch, K. M., Liu, C., Sorensen, A., Kim, S., Peshkin, M.,
Colgate, J. E., Tickel, T., Hannon, D., and Shiels, K.
(2002). Motion guides for assisted manipulation. In-
ternational Journal of Robotics Research, 21(1):27–
43.
Miller, L. M. and Rosen, J. (2010). Comparison of multi-
sensor admittance control in joint space and task space
for a seven degree of freedom upper limb exoskeleton.
In 2010 3rd IEEE RAS and EMBS International Con-
ference on Biomedical Robotics and Biomechatronics
(BioRob), pages 70–75, Tokyo, Japan.
Newman, W. S. (1992). Stability and performance limits
of interaction controllers. ASME Journal of Dynamic
Systems, Measurement, and Control, 114:563–570.
Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk,
E., and van der Kooij, H. (2015). Limpact: A hydrauli-
cally powered self-aligning upper limb exoskeleton.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
22