
Second, the limited sample of storylines intro-
duces potential epistemic biases during ontology de-
sign. Although the hybrid approach partially miti-
gated this limitation, broader validation remains es-
sential. To address these limitations, future work will
focus on expanding the storyline corpus through: 1)
cross-disciplinary scenario workshops; 2) computa-
tional narrative generation techniques; and 3) multi-
decadal temporal sampling.
Future work includes population of the ontology
and an empirical study with stakeholders to evaluate
the middle-out approach’s ease of use, comprehensi-
bility, and completeness.
REFERENCES
Almeida, J. P. A., Falbo, R. A., and Guizzardi, G. (2019).
Events as entities in ontology-driven conceptual mod-
eling. In Conceptual Modeling, pages 469–483,
Cham. Springer Int. Publishing.
Arp, R., Smith, B., and Spear, A. (2015). Building Ontolo-
gies with Basic Formal Ontology. MIT Press.
Beretta, F. (2021). A challenge for historical research:
Making data fair using a collaborative ontology
management environment (ontome). Semant. Web,
12(2):279–294.
Ciullo, A., Martius, O., Strobl, E., and Bresch, D. N. (2021).
A framework for building climate storylines based on
downward counterfactuals: The case of the european
union solidarity fund. Climate Risk Management,
33:100349.
DiGiuseppe, N., Pouchard, L. C., and Noy, N. F. (2014).
SWEET ontology coverage for earth system sciences.
Earth Science Informatics, 7(4):249–264.
Du, H., Wei, L., Dimitrova, V., Magee, D., Clarke, B.,
Collins, R., Entwisle, D., Eskandari Torbaghan, M.,
Curioni, G., Stirling, R., Reeves, H., and Cohn, A. G.
(2023). City infrastructure ontologies. Computers,
Environment and Urban Systems, 104:101991.
Golden, J. (1997). Narrative and the Shaping of Identity,
pages 137–145. Springer Netherlands, Dordrecht.
IPCC (2022). Annex II: Glossary [Möller, V, J.B.R.
Matthews, R. van Diemen, C. Méndez, S. Semenov,
J.S. Fuglestvedt, A. Reisinger (eds.)]. In Climate
Change 2022: Impacts, Adaptation, and Vulnerabil-
ity. Contribution of Working Group II to the Sixth As-
sessment Report of the Intergovernmental Panel on
Climate Change, pages 2897–2930. Cambridge Univ.
Press, Cambridge, UK and New York, NY, USA.
Kutzner, T., Chaturvedi, K., and Kolbe, T. H. (2020).
Citygml 3.0: New functions open up new applica-
tions. Journal of Photogrammetry, Remote Sensing
and Geoinformation Science, 88:43–61.
Lin, J., Sedigh, S., and Hurson, A. R. (2012). Ontolo-
gies and Decision Support for Failure Mitigation in
Intelligent Water Distribution Networks. In 2012 45th
Hawaii International Conference on System Sciences,
pages 1187–1196. ISSN: 1530-1605.
Lin, Y. C., Jenkins, S. F., Chow, J. R., Biass, S., Woo, G.,
and Lallemant, D. (2020). Modeling downward coun-
terfactual events: Unrealized disasters and why they
matter. Frontiers in Earth Science, Volume 8 - 2020.
Marciano, C., Peresan, A., Pirni, A., Pittore, M., Tocchi, G.,
and Zaccaria, A. M. (2024). A participatory foresight
approach in disaster risk management: The multi-risk
storylines. Int. J. Disaster Risk Reduct., 114:104972.
Pruski, C., Hensel, and Sunguroulu, D. (2022). The Role
of Information Modelling and Computational Ontolo-
gies to Support the Design, Planning and Manage-
ment of Urban Environments: Current Status and Fu-
ture Challenges, pages 51–70. Springer Int. Publish-
ing, Cham.
Roese, N. (1999). Counterfactual thinking and decision
making. Psychonomic Bulletin & Review, 6:570578.
Schipper, E., Dubash, N., and Mulugetta, Y. (2021). Cli-
mate change research and the search for solutions: re-
thinking interdisciplinarity. Climatic Change, 168.
Shepherd, T., Boyd, E., Calel, R. A., Chapman, S., Des-
sai, S., Dima-West, I., Fowler, H., James, R., Maraun,
D., Martius, O., Senior, C. A., Sobel, A., Stainforth,
D., Tett, S. F. B., Trenberth, K., Van Den Hurk, B.
J. J. M., Watkins, N., Wilby, R. L., and Zenghelis,
D. A. (2018). Storylines: an alternative approach to
representing uncertainty in physical aspects of climate
change. Climatic Change, 151(3-4):555–571.
Shepherd, T. and Lloyd, E. (2021). Meaningful climate sci-
ence. Climatic Change, 169.
Sillmann, J., Shepherd, T. G., Hurk, B., Hazeleger, W., Mar-
tius, O., Slingo, J., and Zscheischler, J. (2020). Event-
based storylines to address climate risk. Earth’s Fu-
ture, 9-2.
Silva, V., Yepes-Estrada, C., Dabbeek, J., Martins, L., and
Brzev, S. (2018). Ged4all - global exposure database
for multi-hazard risk analysis – multi-hazard exposure
taxonomy. GEM Tech. Report 2018-01, Pavia, Italy.
Stephen, S., Schildhauer, M., Janowicz, K., Currier, K., Hit-
zler, P., Shimizu, C., Fisher, C. K., and Rehberger, D.
(2024). The hip ontology: a formal framework to sup-
port disaster risk reduction and management. In FOIS
2024, FOIS Ontology showcase Track.
Wang, X., Wei, H., Chen, N., He, X., and Tian, Z. (2020).
An Observational Process Ontology-Based Model-
ing Approach for Water Quality Monitoring. Water,
12(3):715.
Woo, G. and Johnson, N. F. (2023). Stochastic modeling of
possible pasts to illuminate future risk. In The Oxford
Handbook of Complex Disaster Risks and Resilience.
Oxford University Press.
Zebisch, M., Renner, K., Pittore, M., Fritsch, U., Fruchter,
S. R., Kienberger, S., Schinko, T., Sparkes, E.,
Hagenlocher, M., Schneiderbauer, S., and Delvis,
J. L. (2023). Climate Risk Sourcebook. Deutsche
Gesellschaft für Int. Zusammenarbeit (GIZ) GmbH.
From Risk Storylines to a Risk-Driven Ontology of Urban Systems
23