
Ahsan, M. M., Mahmud, M. P., Saha, P. K., Gupta, K. D.,
and Siddique, Z. (2021). Effect of data scaling meth-
ods on machine learning algorithms and model perfor-
mance. Technologies, 9(3):52.
Choi, S. W., Lee, C., Lee, J.-M., Park, J. H., and Lee, I.-B.
(2005). Fault detection and identification of nonlin-
ear processes based on kernel pca. Chemometrics and
intelligent laboratory systems, 75(1):55–67.
Ghorbani, H. (2019). Mahalanobis distance and its applica-
tion for detecting multivariate outliers. Facta Univer-
sitatis, Series: Mathematics and Informatics, pages
583–595.
Greenacre, M., Groenen, P. J., Hastie, T., d’Enza, A. I.,
Markos, A., and Tuzhilina, E. (2022). Principal com-
ponent analysis. Nature Reviews Methods Primers,
2(1):100.
Han, S., Hu, X., Huang, H., Jiang, M., and Zhao, Y. (2022).
Adbench: Anomaly detection benchmark. Advances
in neural information processing systems, 35:32142–
32159.
Inoue, J., Yamagata, Y., Chen, Y., Poskitt, C. M., and Sun,
J. (2017). Anomaly detection for a water treatment
system using unsupervised machine learning. In 2017
IEEE international conference on data mining work-
shops (ICDMW), pages 1058–1065. IEEE.
Jeffy, F., Gugaliya, J. K., and Kariwala, V. (2018). Ap-
plication of multi-way principal component analysis
on batch data. In 2018 UKACC 12th International
Conference on Control (CONTROL), pages 414–419.
IEEE.
Kilickaya, S., Ahishali, M., Celebioglu, C., Sohrab, F.,
Eren, L., Ince, T., Askar, M., and Gabbouj, M.
(2024). Audio-based anomaly detection in industrial
machines using deep one-class support vector data de-
scription. arXiv preprint arXiv:2412.10792.
Kong, Y., Wang, Z., Nie, Y., Zhou, T., Zohren, S., Liang,
Y., Sun, P., and Wen, Q. (2024). Unlocking the power
of lstm for long term time series forecasting. arXiv
preprint arXiv:2408.10006.
Lee, J.-M., Yoo, C., and Lee, I.-B. (2004). Fault detection of
batch processes using multiway kernel principal com-
ponent analysis. Computers & chemical engineering,
28(9):1837–1847.
Li, K.-L., Huang, H.-K., Tian, S.-F., and Xu, W. (2003).
Improving one-class svm for anomaly detection. In
Proceedings of the 2003 international conference on
machine learning and cybernetics (IEEE Cat. No.
03EX693), volume 5, pages 3077–3081. IEEE.
Liu, M., Zhu, T., Ye, J., Meng, Q., Sun, L., and Du, B.
(2023). Spatio-temporal autoencoder for traffic flow
prediction. IEEE Transactions on Intelligent Trans-
portation Systems, 24(5):5516–5526.
Majozi, T. (2009). Introduction to batch chemical pro-
cesses. Batch Chemical Process Integration: Anal-
ysis, Synthesis and Optimization, page 1–11.
Mockus, L., Peterson, J. J., Lainez, J. M., and Reklaitis,
G. V. (2015). Batch-to-batch variation: a key com-
ponent for modeling chemical manufacturing pro-
cesses. Organic Process Research & Development,
19(8):908–914.
Nguyen, H. D., Tran, K. P., Thomassey, S., and Hamad,
M. (2021). Forecasting and anomaly detection ap-
proaches using lstm and lstm autoencoder techniques
with the applications in supply chain management.
International Journal of Information Management,
57:102282.
Noh, S.-H. (2021). Analysis of gradient vanishing of
rnns and performance comparison. Information,
12(11):442.
Pirouz, D. M. (2006). An overview of partial least squares.
Available at SSRN 1631359.
Russell, E. L., Chiang, L. H., and Braatz, R. D. (2000).
Fault detection in industrial processes using canon-
ical variate analysis and dynamic principal compo-
nent analysis. Chemometrics and intelligent labora-
tory systems, 51(1):81–93.
Sabzehi, M. and Rollins, P. (2024). Enhancing rover mobil-
ity monitoring: Autoencoder-driven anomaly detec-
tion for curiosity. In 2024 IEEE Aerospace Confer-
ence, pages 1–7. IEEE.
Said Elsayed, M., Le-Khac, N.-A., Dev, S., and Jurcut,
A. D. (2020). Network anomaly detection using lstm
based autoencoder. In Proceedings of the 16th ACM
symposium on QoS and security for wireless and mo-
bile networks, pages 37–45.
Sakurada, M. and Yairi, T. (2014). Anomaly detection
using autoencoders with nonlinear dimensionality re-
duction. In Proceedings of the MLSDA 2014 2nd
workshop on machine learning for sensory data anal-
ysis, pages 4–11.
Sch
¨
olkopf, B., Smola, A., and M
¨
uller, K.-R. (1997). Kernel
principal component analysis. In International con-
ference on artificial neural networks, pages 583–588.
Springer.
Torres, J. F., Hadjout, D., Sebaa, A., Mart
´
ınez-
´
Alvarez, F.,
and Troncoso, A. (2021). Deep learning for time se-
ries forecasting: a survey. Big data, 9(1):3–21.
Wu, J. et al. (2019). Hyperparameter Optimization for Ma-
chine Learning Models Based on Bayesian Optimiza-
tion. Journal of Electronic Science and Technology,
17(1):26–40.
Zeng, L., Long, W., and Li, Y. (2019). A novel method for
gas turbine condition monitoring based on kpca and
analysis of statistics t2 and spe. Processes, 7(3):124.
Zhao, Y., Wang, S., and Xiao, F. (2013). Pattern
recognition-based chillers fault detection method us-
ing support vector data description (svdd). Applied
Energy, 112:1041–1048.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
24