
(2018). A brief review of flood forecasting techniques
and their applications. International journal of river
basin management, 16(3):329–344.
Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., and Pen-
der, G. (2020). A deep convolutional neural network
model for rapid prediction of fluvial flood inundation.
Journal of Hydrology, 590:125481.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Pro-
gressive growing of gans for improved quality, stabil-
ity, and variation. arXiv preprint arXiv:1710.10196.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Kontgis, C. (2021). Mapping the
world in unprecedented detail.
https://medium.com/impactobservatoryinc/mapping-
the-world-in-unprecedented-detail-7c0513205b90.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Liu, Z., Zhang, H., and Liang, Q. (2019). A coupled hydro-
logical and hydrodynamic model for flood simulation.
Hydrology Research, 50(2):589–606.
Luccioni, A., Schmidt, V., Vardanyan, V., and Bengio, Y.
(2021). Using artificial intelligence to visualize the
impacts of climate change. IEEE Computer Graphics
and Applications, 41(1):8–14.
L
¨
utjens, B., Leshchinskiy, B., Boulais, O., Chishtie, F.,
Diaz-Rodriguez, N., Masson-Forsythe, M., Mata-
Payerro, A., Requena-Mesa, C., Sankaranarayanan,
A., Pina, A., et al. (2024). Generating physically-
consistent satellite imagery for climate visualizations.
IEEE Transactions on Geoscience and Remote Sens-
ing.
Mark, D. M. (1983). Automated detection of drainage net-
works from digital elevation models. In Proceedings
of Auto-Carto, volume 6, pages 288–298.
Mihon, D., Bacu, V., Rodila, D., Stefanut, T., Abbaspour,
K., Rouholahnejad, E., and Gorgan, D. (2013). Grid
based hydrologic model calibration and execution.
Advances in Intelligent Control Systems and Com-
puter Science, pages 279–293.
Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.
(2020). Real-time flood forecasting based on a high-
performance 2-d hydrodynamic model and numeri-
cal weather predictions. Water Resources Research,
56(7):e2019WR025583.
Mosavi, A., Ozturk, P., and Chau, K.-w. (2018). Flood pre-
diction using machine learning models: Literature re-
view. Water, 10(11):1536.
Mujumdar, P. and Kumar, D. N. (2012). Floods in a chang-
ing climate: hydrologic modeling. Cambridge Univer-
sity Press.
Pender, G. and Faulkner, H. (2010). Flood Risk Science and
Management. John Wiley & Sons.
Poterek, Q., Caretto, A., Braun, R., Clandillon, S., Huber,
C., and Ceccato, P. (2025). Interpolated flood sur-
face (inflos), a rapid and operational tool to estimate
flood depths from earth observation data for emer-
gency management. Remote Sensing, 17(2):329.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Model-
agnostic interpretability of machine learning. arXiv
preprint arXiv:1606.05386.
Rui, X., Cao, Y., Yuan, X., Kang, Y., and Song, W. (2021).
Disastergan: Generative adversarial networks for re-
mote sensing disaster image generation. Remote Sens-
ing, 13(21):4284.
Schmidt, V., Luccioni, A., Mukkavilli, S. K., Balasooriya,
N., Sankaran, K., Chayes, J., and Bengio, Y. (2019).
Visualizing the consequences of climate change using
cycle-consistent adversarial networks. arXiv preprint
arXiv:1905.03709.
Schmidt, V., Luccioni, A. S., Teng, M., Zhang, T., Reynaud,
A., Raghupathi, S., Cosne, G., Juraver, A., Vardanyan,
V., Hernandez-Garcia, A., et al. (2021). Climategan:
Raising climate change awareness by generating im-
ages of floods. arXiv preprint arXiv:2110.02871.
Sivanpillai, R., Jacobs, K. M., Mattilio, C. M., and Pisko-
rski, E. V. (2021). Rapid flood inundation mapping
by differencing water indices from pre-and post-flood
landsat images. Frontiers of Earth Science, 15:1–11.
Smith, K. and Ward, R. (1998). Floods: physical processes
and human impacts. John Wiley & Sons.
Tang, H., Liu, H., Xu, D., Torr, P. H., and Sebe, N.
(2021). Attentiongan: Unpaired image-to-image
translation using attention-guided generative adver-
sarial networks. IEEE transactions on neural net-
works and learning systems, 34(4):1972–1987.
UNDP (2023). Climate change’s impact on coastal flooding
to increase 5-times over this century, putting over 70
million people in the path of expanding floodplains,
according to new undp and cil data. United Nations
Development Programme.
Wang, L. and Liu, H. (2006). An efficient method for iden-
tifying and filling surface depressions in digital eleva-
tion models for hydrologic analysis and modelling. In-
ternational Journal of Geographical Information Sci-
ence, 20(2):193–213.
Wang, M., Wang, H., Xiao, J., and Liao, L. (2022). A
review of disentangled representation learning for re-
mote sensing data. CAAI Artificial Intelligence Re-
search, 1(2).
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and
Catanzaro, B. (2018). High-resolution image synthe-
sis and semantic manipulation with conditional gans.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8798–8807.
Wang, Y., Fang, Z., Hong, H., and Peng, L. (2020). Flood
susceptibility mapping using convolutional neural net-
work frameworks. Journal of Hydrology, 582:124482.
Ward, R. C. (1978). Floods: a geographical perspective.
The Macmillan Press Ltd.
Wolock, D. M. and McCabe Jr, G. J. (1995). Comparison
of single and multiple flow direction algorithms for
computing topographic parameters in topmodel. Wa-
ter Resources Research, 31(5):1315–1324.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 2223–2232.
Generating Aerial Flood Prediction Imagery with Generative Adversarial Networks
27