
REFERENCES
Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2018).
Brain tumor type classification via capsule networks.
In 2018 25th IEEE International Conference on Image
Processing (ICIP) (pp. 3129–3133). IEEE.
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Gold-
berger, J., & Greenspan, H. (2018). GAN-based
synthetic medical image augmentation for increased
CNN performance in liver lesion classification. Neu-
rocomputing, 321, 321–331. https://doi.org/10.1016/j.
neucom.2018.09.013.
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S.,
Liang, H., Baxter, S. L., et al. (2018). Identifying med-
ical diagnoses and treatable diseases by image-based
deep learning. Cell, 172(5), 1122–1131.e9. https://doi.
org/10.1016/j.cell.2018.02.010.
Zhang, Y., Lin, H., Yang, Z., Wang, J., Sun, Y., Xu, B.,
& Zhao, Z. (2019). Neural network-based approaches
for biomedical relation classification: A review. Jour-
nal of Biomedical Informatics, 99. https://doi.org/10.
1016/j.jbi.2019.103294.
Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A.
(n.d.). Cancer diagnosis using deep learning: A bib-
liographic review. Cancers.
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017).
SegNet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
39(12), 2481–2495. https://doi.org/10.1109/TPAMI.
2016.2644615.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., et al. (2017). A survey
on deep learning in medical image analysis. Medical
Image Analysis, 42, 60–88. https://doi.org/10.1016/j.
media.2017.07.005.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M.,
Blau, H. M., et al. (2017). Dermatologist-level clas-
sification of skin cancer with deep neural networks.
Nature, 542(7639), 115–118. https://doi.org/10.1038/
nature21056.
Roth, H. R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K.,
et al. (2016). Improving computer-aided detection us-
ing convolutional neural networks and random view
aggregation. IEEE Transactions on Medical Imaging,
35(5), 1170–1181. https://doi.org/10.1109/TMI.2015.
2482920.
Jia, X., & Meng, M. Q. H. (2016). A deep convolutional
neural network for bleeding detection in Wireless
Capsule Endoscopy images. In Proceedings of the An-
nual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, EMBS (pp. 639–
642). https://doi.org/10.1109/EMBC.2016.7590783.
Cui, Z., Yang, J., & Qiao, Y. (2016). Brain MRI segmen-
tation with a patch-based CNN approach. In Chinese
Control Conference, CCC (pp. 7026–7031). https://
doi.org/10.1109/ChiCC.2016.7554465.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-
Net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015 (pp.
234–241). Springer International Publishing. https://
doi.org/10.1007/978-3-319-24574-4 28.
Cires¸an, D. C., Giusti, A., Gambardella, L. M., & Schmid-
huber, J. (2013). Mitosis detection in breast cancer
histology images with deep neural networks. In Lec-
ture Notes in Computer Science (pp. 411–418). https:
//doi.org/10.1007/978-3-642-40763-5 51.
Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi,
P. (2014). Learning activation functions to improve
deep neural networks. arXiv. https://arxiv.org/abs/
1412.6830.
Baldi, P., & Sadowski, P. (2014). The dropout learning al-
gorithm. Artificial Intelligence, 210, 78–122.
Chang, H., Han, J., Zhong, C., Snijders, A., & Mao, J.-
H. (2017). Unsupervised transfer learning via multi-
scale convolutional sparse coding for biomedical
applications. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence. https://doi.org/10.1109/
TPAMI.2017.2656884.
Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in
medical image analysis. Annual Review of Biomedical
Engineering, 19(1), 221–248. https://doi.org/10.1146/
annurev-bioeng-071516-044442.
Reyes, M. P., Shyu, M.-L., Sadiq, S., Iyengar, S. S., Yan, Y.,
Chen, S.-C., et al. (2018). A survey on deep learning.
ACM Computing Surveys, 51(5), 1–36. https://doi.org/
10.1145/3234150.
Shrestha, A., & Mahmood, A. (2019). Review of deep
learning algorithms and architectures. IEEE Access,
7, 53040–53065. https://doi.org/10.1109/ACCESS.
2019.2912200.
Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for
medical image processing: Overview, challenges, and
the future. In Lecture Notes in Computational Vision
and Biomechanics (pp. 323–350). https://doi.org/10.
1007/978-3-319-65981-7 12.
Russo, M., Stella, M., Sikora, M., & Sari, M. (2018). CNN-
based method for lung cancer detection in whole slide
histopathology images. Cancers, 14–17.
M. Shruthi, A. Prashanth and S. Bachu, ”Machine
Learning and End to End Deep Learning for
Detection of Chronic Heart Failure from Heart
Sounds,” 2024 5th International Conference on Re-
cent Trends in Computer Science and Technology
(ICRTCST), Jamshedpur, India, 2024, pp. 310-316,
doi: 10.1109/ICRTCST61793.2024.10578348
Development of Facial Detection System for Security Pur-
pose Using Machine Learning, M. Srinivasa Sesha
Sai, Ranjith Kumar Gatla, Ch. Vijaya Lakshmi, Adda-
gatla Prashanth, D. S. Naga Malleswara Rao and
Anitha Gatla E3S Web Conf., 564 (2024) 07002. DOI:
https://doi.org/10.1051/e3sconf/202456407002
Creation and Assessment of Herbal Gel with Guava
Leaf Extract K. Deepika, A. Sairoja and P. Sri
Jyothi E3S Web Conf., 564 (2024) 07003. DOI:
https://doi.org/10.1051/e3sconf/202456407003
Medical Image Classification Using Deep Neural Networks: An X-Ray Classification
769