
X. (2022a). Membership inference attacks on machine
learning: A survey. ACM Comput. Surv., 54(11s).
Hu, P., Wang, Z., Sun, R., Wang, H., and Xue, M. (2022b).
M
4
I: Multi-modal models membership inference. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A., editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages
1867–1882. Curran Associates, Inc.
Kucharski, A. and Fabija
´
nska, A. (2025). Towards im-
proved evaluation of generative neural networks: The
Fr
´
echet coefficient. Neurocomputing, 623:129422.
LAION, Large-scale Artificial Intelligence Open Network
(2022). https://laion.ai/blog/laion-aesthetics/.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Doll
´
ar, P., and Zitnick, C. L. (2014). Mi-
crosoft coco: Common objects in context. In Fleet,
D., Pajdla, T., Schiele, B., and Tuytelaars, T., edi-
tors, Computer Vision – ECCV 2014, pages 740–755,
Cham. Springer International Publishing.
Liu, H., Jia, J., Qu, W., and Gong, N. Z. (2021). Encodermi:
Membership inference against pre-trained encoders in
contrastive learning. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’21, page 2081–2095, New York,
NY, USA. Association for Computing Machinery.
Liu, H., Wang, Y., Fan, W., Liu, X., Li, Y., Jain, S., Liu,
Y., Jain, A., and Tang, J. (2022). Trustworthy ai: A
computational perspective. ACM Trans. Intell. Syst.
Technol., 14(1).
Liu, K. S., Xiao, C., Li, B., and Gao, J. (2019). Performing
co-membership attacks against deep generative mod-
els. In 2019 IEEE International Conference on Data
Mining (ICDM), pages 459–467.
Long, Y., Bindschaedler, V., Wang, L., Bu, D., Wang, X.,
Tang, H., Gunter, C. A., and Chen, K. (2018). Under-
standing membership inferences on well-generalized
learning models.
Long, Y., Wang, L., Bu, D., Bindschaedler, V., Wang, X.,
Tang, H., Gunter, C. A., and Chen, K. (2020). A prag-
matic approach to membership inferences on machine
learning models. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 521–534.
Niu, J., Liu, P., Zhu, X., Shen, K., Wang, Y., Chi, H., Shen,
Y., Jiang, X., Ma, J., and Zhang, Y. (2024). A sur-
vey on membership inference attacks and defenses in
machine learning. Journal of Information and Intelli-
gence, 2(5):404–454.
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. (2021). Learn-
ing transferable visual models from natural language
supervision. In Meila, M. and Zhang, T., editors, Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 8748–8763. PMLR.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10684–10695.
Rosenberg, I., Shabtai, A., Elovici, Y., and Rokach, L.
(2021). Adversarial machine learning attacks and de-
fense methods in the cyber security domain. ACM
Comput. Surv., 54(5).
Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M.,
and Backes, M. (2019). Ml-leaks: Model and data in-
dependent membership inference attacks and defenses
on machine learning models. In Proceedings of the
26th Annual Network and Distributed System Security
Symposium (NDSS).
Shokri, R., Strobel, M., and Zick, Y. (2021). On the privacy
risks of model explanations. In Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, AIES ’21, page 231–241, New York, NY, USA.
Association for Computing Machinery.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2017). Membership inference attacks against ma-
chine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18.
Song, C. and Raghunathan, A. (2020). Information leak-
age in embedding models. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’20, page 377–390, New
York, NY, USA. Association for Computing Machin-
ery.
Truong, V. T., Dang, L. B., and Le, L. B. (2025). Attacks
and defenses for generative diffusion models: A com-
prehensive survey. ACM Comput. Surv. Just Accepted.
Zhang, M., Yu, N., Wen, R., Backes, M., and Zhang, Y.
(2024). Generated distributions are all you need for
membership inference attacks against generative mod-
els. In 2024 IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 4827–
4837.
Zhou, J., Chen, Y., Shen, C., and Zhang, Y. (2022). Prop-
erty inference attacks against gans. In 29th Annual
Network and Distributed System Security Symposium,
NDSS 2022, San Diego, California, USA, April 24-28,
2022. The Internet Society.
Synthetic and (Un)Secure: Evaluating Generalized Membership Inference Attacks on Image Data
297