the Italian Chapter of AIS (Association for Information
Systems).
Bundi, D. G., Mutua, S., & Karume, S. (2023). A review of
distributed ledger technologies application in medical
systems interoperability. African Journal of Science,
Technology and Social Sciences, 2(2), 1–11.
Christidis, K., & Devetsikiotis, M. (2016). Blockchains and
Smart Contracts for the Internet of Things. IEEE
Access, 4, 2292–2303. https://doi.org/10.1109/access.
2016.2566339
Davenport, T. H., & Kirby, J. (2016). Only humans need
apply: Winners and losers in the age of smart machines
(Vol. 1). Harper Business New York.
DeFranco, J. F., Roberts, J., Ferraiolo, D., & Compton, D.
C. (2024). An infrastructure for secure data sharing: A
clinical data implementation. JAMIA Open, 7(2),
ooae040.
Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y. K.,
Mäntymäki, M., & Pappas, I. O. (2023). Artificial
intelligence (AI) and information systems: Perspectives
to responsible AI. Information Systems Frontiers,
25(1), 1–7.
Drosatos, G., & Kaldoudi, E. (2019). Blockchain
applications in the biomedical domain: A scoping
review. Computational and Structural Biotechnology
Journal, 17, 229–240.
Easterling, D., Perry, A. C., Woodside, R., Patel, T., &
Gesell, S. B. (2022). Clarifying the concept of a
learning health system for healthcare delivery
organizations: Implications from a qualitative analysis
of the scientific literature. Learning Health Systems,
6(2), e10287.
Ferraiolo, D. F., Defranco, J. F., Kuhn, D. R., & Roberts, J.
(2021). A New Approach to Data Sharing and
Distributed Ledger Technology: A Clinical Trial Use
Case. IEEE Netw., 35(1), 4–5.
Florio, M. (2019). Investing in science: Social cost-benefit
analysis of research infrastructures. Mit Press.
Gheibi, O., Weyns, D., & Quin, F. (2021). Applying
machine learning in self-adaptive systems: A
systematic literature review. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 15(3), 1–
37.
König, L., & Neumaier, S. (2023). Building a Knowledge
Graph of Distributed Ledger Technologies. arXiv
Preprint arXiv:2303.16528.
Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The
role of explainability in creating trustworthy artificial
intelligence for health care: A comprehensive survey of
the terminology, design choices, and evaluation
strategies. Journal of Biomedical Informatics, 113,
103655.
Mutashar, M. K. (2024). Navigating ethics in AI-driven
translation for a human-centric future. Academia Open,
9(2), 10–21070.
Nilsson, J., Javed, S., Albertsson, K., Delsing, J., Liwicki,
M., & Sandin, F. (2024). Ai concepts for system of
systems dynamic interoperability. Sensors, 24(9), 2921.
Pandl, K. D., Thiebes, S., Schmidt-Kraepelin, M., &
Sunyaev, A. (2020). On the Convergence of Artificial
Intelligence and Distributed Ledger Technology: A
Scoping Review and Future Research Agenda (No.
arXiv:2001.11017). arXiv. https://doi.org/10.48550/
arXiv.2001.11017
Plenk, M., Levant, I., & Bellon, N. (2019). How technology
(or distributed ledger technology and algorithms like
deep learning and machine learning) can help to comply
with regulatory requirements. In The impact of digital
transformation and FinTech on the finance
professional (pp. 241–258). Springer.
Rauchs, M., Glidden, A., Gordon, B., Pieters, G. C.,
Recanatini, M., Rostand, F., Vagneur, K., & Zhang, B.
Z. (2018). Distributed ledger technology systems: A
conceptual framework. Available at SSRN 3230013.
Russell, S. J., & Norvig, P. (2021). Artificial Intelligence:
A Modern Approach, Global Edition 4e.
Samek, W., Wiegand, T., & Müller, K.-R. (2017).
Explainable artificial intelligence: Understanding,
visualizing and interpreting deep learning models.
arXiv Preprint arXiv:1708.08296.
Sterne, J., & Davenport, T. H. (2024). A brief history and
the future of customer data. Applied Marketing
Analytics, 10(3), 194–204.
Taherdoost, H., & Madanchian, M. (2023). Artificial
intelligence and knowledge management: Impacts,
benefits, and implementation. Computers, 12(4), 72.
Tenenbaum, J. D. (2024). Accelerating a learning public
health system: Opportunities, obstacles, and a call to
action. Learning Health Systems, 8(4), e10449.
Vadari, S., & Desik, P. A. (2021). The role of AI/ML in
enhancing knowledge management systems. IUP
Journal of Knowledge Management, 19(2), 7–31.
Yano, E. M., Resnick, A., Gluck, M., Kwon, H., & Mistry,
K. B. (2021). Accelerating learning healthcare system
development through embedded research: Career
trajectories, training needs, and strategies for managing
and supporting embedded researchers. Healthcare,
8,
100479.
Zaarour, T., Khalid, A., Pradeep, P., & Zahran, A. (2024).
Using Distributed Ledgers To Build Knowledge
Graphs For Decentralized Computing Ecosystems.
Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, 3083–
3092.
Zhang, D., Xia, B., Liu, Y., Xu, X., Hoang, T., Xing, Z.,
Staples, M., Lu, Q., & Zhu, L. (2024). Privacy and
copyright protection in generative AI: A lifecycle
perspective. Proceedings of the IEEE/ACM 3rd
International Conference on AI Engineering-Software
Engineering for AI, 92–97.
Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017).
An overview of blockchain technology: Architecture,
consensus, and future trends. 2017 IEEE International
Congress on Big Data (BigData Congress), 557–564.