
convolutional networks. Journal of cardiovascular
magnetic resonance, 20(1):65.
Chen, M., Fang, L., Zhuang, Q., and Liu, H. (2019). Deep
learning assessment of myocardial infarction from mr
image sequences. IEEE Access, 7:5438–5446.
Denaro, F., Madau, A., Martini, C., and Pecori, R. (2024).
An explainable approach to characterize heart dis-
eases using ecg images. In 2024 IEEE International
Conference on Metrology for eXtended Reality, Arti-
ficial Intelligence and Neural Engineering, MetroX-
RAINE 2024 - Proceedings, page 867 – 872. Cited
by: 0.
Deva, D. P., Hanneman, K., Li, Q., Ng, M. Y., Wasim, S.,
Morel, C., Iwanochko, R. M., Thavendiranathan, P.,
and Crean, A. M. (2016). Cardiovascular magnetic
resonance demonstration of the spectrum of morpho-
logical phenotypes and patterns of myocardial scar-
ring in anderson-fabry disease. Journal of Cardiovas-
cular Magnetic Resonance, 18(1):14.
Fotin, S. V., Yankelevitz, D. F., Henschke, C. I., and
Reeves, A. P. (2019). A multiscale laplacian of gaus-
sian (log) filtering approach to pulmonary nodule de-
tection from whole-lung ct scans. arXiv preprint
arXiv:1907.08328.
Gravina, M., Troise, D., Infante, B., Tartaglia, L., Minop-
oli, B., Allegra, C., Casavecchia, G., Gambacorta,
M., Montanile, C., Mercuri, S., et al. (2024). A
non-invasive technique to unveil renal implications in
anderson–fabry disease. Biomedicines, 12(9):1950.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., van der Laak, J. A., van
Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
Image Analysis, 42:60–88.
Prencipe, B., Delprete, C., Garolla, E., Corallo, F., Gravina,
M., Natalicchio, M. I., Buongiorno, D., Bevilacqua,
V., Altini, N., and Brunetti, A. (2023). An explainable
radiogenomic framework to predict mutational status
of kras and egfr in lung adenocarcinoma patients. Bio-
engineering, 10(7):747.
Qiao, Y., Zhou, H., Liu, Y., Chen, R., Zhang, X., Nie,
S., Hou, F. F., Zhao, Y., Xu, X., and Zhao, L.
(2025). A multi-modal fusion model with enhanced
feature representation for chronic kidney disease pro-
gression prediction. Briefings in Bioinformatics,
26(1):bbaf003.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2020). Grad-cam: visual
explanations from deep networks via gradient-based
localization. International journal of computer vision,
128:336–359.
Tøndel, C., Bostad, L., Hirth, A., and Svarstad, E. (2008).
Renal biopsy findings in children and adolescents with
fabry disease and minimal albuminuria. American
journal of kidney diseases, 51(5):767–776.
Torra, R. (2008). Treatment and renal involvement in fabry
disease. Kidney International, 74(Suppl 111):S29–
S32.
Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K.
(2018). Convolutional neural networks: an overview
and application in radiology. Insights into imaging,
9:611–629.
Zhang, M., Ye, Z., Yuan, E., Lv, X., Zhang, Y., Tan,
Y., Xia, C., Tang, J., Huang, J., and Li, Z. (2024).
Imaging-based deep learning in kidney diseases: re-
cent progress and future prospects. Insights into imag-
ing, 15(1):50.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2016). Learning deep features for discrim-
inative localization. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2921–2929.
DMDH 2025 - Special Session on Data-Driven Models for Digital Health Transformation
818