
REFERENCES
Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K.,
Abuleil, S., and Abu-Salem, H. (2009). A taxonomy
of an it project failure: root causes. International
Management Review, 5(1):93.
Amirkhani, A. and Barshooi, A. H. (2022). Consensus in
multi-agent systems: a review. Artificial Intelligence
Review, 55(5):3897–3935.
Barab
´
asi, A.-L., Albert, R., and Jeong, H. (2000). Scale-
free characteristics of random networks: the topology
of the world-wide web. Physica A: statistical mechan-
ics and its applications, 281(1-4):69–77.
Chang, M.-H. and Harrington, J. E. (2000). Centralization
vs. decentralization in a multi-unit organization: A
computational model of a retail chain as a multi-agent
adaptive system. Management Science, 46(11):1427–
1440.
Dunbar, R. I. (1998). The social brain hypothesis. Evo-
lutionary Anthropology: Issues, News, and Reviews:
Issues, News, and Reviews, 6(5):178–190.
Erd
˝
os, P., R
´
enyi, A., et al. (1960). On the evolution of
random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60.
Iacopini, I., Petri, G., Baronchelli, A., and Barrat, A.
(2022). Group interactions modulate critical mass
dynamics in social convention. Communications
Physics, 5(1):64.
Keupp, M. M., Palmi
´
e, M., and Gassmann, O. (2012). The
strategic management of innovation: A systematic re-
view and paths for future research. International jour-
nal of management reviews, 14(4):367–390.
Kian, M. E., Sun, M., and Bosch
´
e, F. (2016). A consistency-
checking consensus-building method to assess com-
plexity of energy megaprojects. Procedia-social and
behavioral sciences, 226:43–50.
Leishman, T. G., Green, D. G., and Driver, S. (2009).
Self-organization in simulated social networks. In
Computer-Mediated Social Networking: First Inter-
national Conference, ICCMSN 2008, Dunedin, New
Zealand, June 11-13, 2008, Revised Selected Papers,
pages 150–156. Springer.
Michalski, R., Serwata, D., Nurek, M., Szymanski, B. K.,
Kazienko, P., and Jia, T. (2022). Temporal network
epistemology: On reaching consensus in a real-world
setting. Chaos: An Interdisciplinary Journal of Non-
linear Science, 32(6).
Reagans, R., Miron-Spektor, E., and Argote, L. (2016).
Knowledge utilization, coordination, and team perfor-
mance. Organization Science, 27(5):1108–1124.
S
´
aenz-Royo, C. and Lozano-Rojo, A. (2023). Authoritar-
ianism versus participation in innovation decisions.
Technovation, 124:102741.
Stocker, R., Green, D. G., and Newth, D. (2001). Consensus
and cohesion in simulated social networks. Journal of
Artificial Societies and Social Simulation, 4(4).
Vorster, J. and Leenen, L. (2023a). Consensus simulator for
organisational structures. In Proceedings of the 13th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, pages
15–26.
Vorster, J. and Leenen, L. (2023b). Exploring the effects of
subversive agents on consensus-seeking processes us-
ing a multi-agent simulator. In Proceedings of the 13th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, pages
104–114.
Vorster, J. and Leenen, L. (2024a). The unreasonable ef-
fectiveness of artefacts and documentation: An explo-
ration of consensus using multi-agent simulations in
a two-team configuration. In Proceedings of the 14th
International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications –
SIMULTECH, pages 313–323.
Vorster, J. S. and Leenen, L. (2024b). Exploring the im-
pact of subversive agents on consensus processes in
project teams: Multi-agent simulations. In Wagner,
G., Werner, F., and De Rango, F., editors, Simula-
tion and Modeling Methodologies, Technologies and
Applications, pages 29–60, Cham. Springer Nature
Switzerland.
Vorster, J. S. and Leenen, L. (2024c). Stochastic consen-
sus simulation fororganizational cooperation. In Wag-
ner, G., Werner, F., and De Rango, F., editors, Simula-
tion and Modeling Methodologies, Technologies and
Applications, pages 139–173, Cham. Springer Nature
Switzerland.
Waheeb, R. A. and Andersen, B. S. (2022). Causes of prob-
lems in post-disaster emergency re-construction pro-
jectsiraq as a case study. Public Works Management
& Policy, 27(1):61–97.
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics
of small-world networks. Nature.
Whitney, K. M. and Daniels, C. B. (2013). The root cause
of failure in complex it projects: Complexity itself.
Procedia Computer Science, 20:325–330.
Will, M. G., Al-Kfairy, M., and Mellor, R. B. (2019). How
organizational structure transforms risky innovations
into performance–a computer simulation. Simulation
Modelling Practice and Theory, 94:264–285.
Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim,
C., and Szymanski, B. K. (2011). Social consensus
through the influence of committed minorities. Phys-
ical Review E, 84(1):011130.
Yan, H.-B., Ma, T., and Huynh, V.-N. (2017). On qualitative
multi-attribute group decision making and its consen-
sus measure: A probability based perspective. Omega,
70:94–117.
SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
144