
ing techniques like SMOTE; (iii) dynamic scaling and
replication strategies; and (iv) broader evaluations us-
ing diverse datasets and comparisons with MLOps
platforms such as MLFlow and Kubeflow.
ACKNOWLEDGEMENTS
This work was supported by the Brazilian Federal
Agency for Support and Evaluation of Graduate Edu-
cation (CAPES) – Finance Code 001.
The authors would like to thank FUNCAP – Cear
´
a
Foundation for Scientific and Technological Develop-
ment Support – for the support provided throughout
this work.
REFERENCES
Abdallah, A., Maarof, M. A., and Zainal, A. (2016). Fraud
detection system: A survey. Journal of Network and
Computer Applications, 68:90–113.
Bakhtiari, S., Nasiri, Z., and Vahidi, J. (2023). Credit card
fraud detection using ensemble data mining methods.
Multimedia Tools and Applications, pages 1–19.
Blanco, D. G. (2023). Practical OpenTelemetry. Springer.
Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.-A., Caelen, O.,
Mazzer, Y., and Bontempi, G. (2018). Scarff: a scal-
able framework for streaming credit card fraud detec-
tion with spark. Information fusion, 41:182–194.
Coelho, W., Zanotelli, V., Comarela, G., and Villac¸a, R.
(2024). Raven: Detecc¸
˜
ao e classificac¸
˜
ao precoce de
atores maliciosos em uma rede acad
ˆ
emica. In Anais
do XLII Simp
´
osio Brasileiro de Redes de Computa-
dores e Sistemas Distribu
´
ıdos, pages 351–364, Porto
Alegre, RS, Brasil. SBC.
Ebrahimi, A., Ghobaei-Arani, M., and Saboohi, H. (2024).
Cold start latency mitigation mechanisms in serverless
computing: taxonomy, review, and future directions.
Journal of Systems Architecture, page 103115.
Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., Aslam,
S. M. H., et al. (2023). Xgboost and random forest
algorithms: an in depth analysis. Pakistan Journal of
Scientific Research, 3(1):26–31.
Gupta, P., Varshney, A., Khan, M. R., Ahmed, R., Shuaib,
M., and Alam, S. (2023). Unbalanced credit card
fraud detection data: a machine learning-oriented
comparative study of balancing techniques. Procedia
Computer Science, 218:2575–2584.
Karumuri, S., Solleza, F., Zdonik, S., and Tatbul, N.
(2021). Towards observability data management at
scale. ACM SIGMOD Record, 49(4):18–23.
Kosi
´
nska, J., Bali
´
s, B., Konieczny, M., Malawski, M., and
Zielin
´
ski, S. (2023). Towards the observability of
cloud-native applications: The overview of the state-
of-the-art. IEEE Access.
Majors, C., Fong-Jones, L., and Miranda, G. (2022). Ob-
servability Engineering: Achieving Production Excel-
lence. O’Reilly Media, Incorporated.
Megargel, A., Poskitt, C. M., and Shankararaman, V.
(2021). Microservices orchestration vs. choreogra-
phy: A decision framework. In 2021 IEEE 25th In-
ternational Enterprise Distributed Object Computing
Conference (EDOC), pages 134–141. IEEE.
Menshchikov, A., Perfilev, V., Roenko, D., Zykin, M., and
Fedosenko, M. (2022). Comparative analysis of ma-
chine learning methods application for financial fraud
detection. In 2022 32nd Conference of Open Innova-
tions Association (FRUCT), pages 178–186. IEEE.
Mienye, I. D. and Sun, Y. (2023). A deep learning ensemble
with data resampling for credit card fraud detection.
IEEE Access, 11:30628–30638.
Prusti, D., Das, D., and Rath, S. K. (2021). Credit card
fraud detection technique by applying graph database
model. Arabian Journal for Science and Engineering,
46(9):1–20.
Santos, R. S., Ara
´
ujo, R., Rego, P. A., da SM Filho, J. M.,
da S Filho, J. G., Neto, J. D., de Freitas, N. C., and
Rodrigues, E. B. (2023). Arquitetura de tempo real
e modelo de aprendizado de m
´
aquina para detecc¸ao
de fraudes de cartao de cr
´
edito. In Anais do XXIII
Simp
´
osio Brasileiro em Seguranc¸a da Informac¸
˜
ao e
de Sistemas Computacionais, pages 265–278. SBC.
Surianarayanan, C., Kunasekaran, S., and Chelliah, P. R.
(2024). A high-throughput architecture for anomaly
detection in streaming data using machine learning al-
gorithms. International Journal of Information Tech-
nology, 16(1):493–506.
Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga,
S., and Kuruwitaarachchi, N. (2019). Real-time credit
card fraud detection using machine learning. In
2019 9th International Conference on Cloud Comput-
ing, Data Science & Engineering (Confluence), pages
488–493. IEEE.
APPENDIX
The metrics used and the results obtained are avail-
able at the following link
6
.
6
https://drive.google.com/file/d/1eAMEmJ2sQlHhzvD
DOTZBvLujaWGRP0TD/view?usp=sharing
A Microservice-Based Architecture for Real-Time Credit Card Fraud Detection with Observability
755