
Table 1: RMSE for each semester, considering the average results for all products.
2020 2021 2022 2023 2024
1º 2º 1º 2º 1º 2º 1º 2º 1º 2º
LR 4,851 9,021 5,756 6,096 7,722 7,523 6,434 5,057 4,520 3,160
LSTM 3,955 7,445 3,615 3,729 4,551 4,782 3,994 2,680 3,163 2,120
GRU 3,889 7,437 3,299 3,604 4,304 4,680 4,125 2,710 2,405 2,203
Table 2: MAPE for each semester, considering the average results for all products.
2020 2021 2022 2023 2024
1º 2º 1º 2º 1º 2º 1º 2º 1º 2º
LR 68,28 75,22 76,91 75,34 87,43 84,22 78,34 78,32 75,28 75,87
LSTM 63,16 57,59 55,54 51,68 47,85 48,28 43,94 47,26 49,08 48,46
GRU 62,62 54,44 59,06 48,75 45,81 47,98 44,77 44,10 45,92 50,98
Table 3: RMSE for each semester, considering the average results for the products by each category.
2020 2021 2022 2023 2024
1º 2º 1º 2º 1º 2º 1º 2º 1º 2º
C
1
LR 5,642 7,642 5,526 6,488 11,391 9,353 9,259 5,800 5,609 5,024
LSTM 4,848 5,091 3,175 3,484 7,133 5,367 5,844 3,594 3,378 3,193
GRU 4,891 4,41 3,027 3,169 6,150 4,628 4,952 3,352 3,400 2,854
C
2
LR 13,27 62,31 22,69 21,12 22,44 30,01 18,21 10,25 8,35 6,89
LSTM 11,25 58,08 17,96 17,68 19,70 28,73 16,73 9,090 9,630 7,180
GRU 11,19 59,11 17,63 19,16 20,28 30,21 23,23 9,411 9,737 9,756
C
3
LR 3,461 4,016 3,839 4,334 5,443 5,064 4,468 4,050 4,306 3,146
LSTM 2,822 3,088 2,187 2,257 2,829 2,206 2,211 1,893 2,259 1,610
GRU 2,725 2,482 1,738 1,802 2,768 1,929 1,658 1,774 2,148 1,726
C
4
LR 2,368 2,507 2,855 2,402 6,093 4,630 3,336 2,650 2,392 2,110
LSTM 2,146 1,938 1,978 1,497 3,055 3,189 2,214 1,633 1,508 1.214
GRU 2,058 1,572 1,518 1,253 2,911 2,954 2,015 1,324 1,339 1,099
C
5
LR 4,214 4,666 6,222 8,477 7,363 5,984 6,552 7,988 6,432 4,606
LSTM 3,295 2,743 3,012 4,824 2,274 2,719 3,388 3,943 3,040 1,956
GRU 3,103 2,413 2,609 4,896 3,068 3,413 3,288 4,029 2,775 2,060
C
6
LR 4,140 4,276 4,435 4,435 4,775 5,065 6,120 4,292 3,793 3,429
LSTM 3,168 2,539 2,063 2,053 1,751 2,099 3,114 1,851 1,565 1,378
GRU 3,102 2,242 1,799 1,808 1,718 1,62 2,851 1,385 1,343 1,412
C
7
LR 3,808 3,404 3,9,7 3,804 4,325 4,649 4,204 4,338 3,637 2,862
LSTM 2,962 2,127 1,849 1,784 1,632 1,844 1,758 1,779 1,334 1,075
GRU 2,892 1,887 1,597 1,57 1,443 1,802 1,617 1,719 1,303 1,087
C
8
LR 6,464 6,679 6,112 5,417 4,234 5,156 4,484 3,584 3,142 2,189
LSTM 4,110 3,178 2,910 2,827 2,351 3,123 2,307 1,792 1,744 1,368
GRU 4,113 3,012 2,805 2,645 2,190 2,843 2,872 1,717 1,549 1,772
2024, particularly with the LSTM and GRU mod-
els. This improvement may also be linked to the pan-
demic, as the models were trained using data from
previous years. Consequently, the predictive perfor-
mance has improved from 2023 onwards when the
training dataset comprises only post-pandemic peak
data (i.e., from 2022 onwards). Furthermore, as seen
in Tables 1 and 2, in 2024, RMSE values decreased
to approximately 2. However, the MAPE values re-
mained relatively high.
We also evaluated the experimental metrics con-
sidering each of the product groups described in Sub-
section 4. Tables 3 and 4 present the RMSE and
MAPE results for each of these subsets, with a struc-
ture similar to that of Tables 1 and 2, but every three
rows, the results refer to one of the product groups.
In Tables 3 and 4, a pattern of results similar to
that described in Tables 1 and 3 can be observed,
except for the products in groups C
1
and C
2
(alco-
holic and non-alcoholic beverages), which presented
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
744