
ical Informatics and Decision Making, 16, suppl.3,
p74,.
Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.,
and Sun, J. (2017). Generating Multi-Label Discrete
Patient Records Using Generative Adversarial Net-
works. In Proceedings of the Machine Learning for
Healthcare Conference (MLHC), volume 68, pages
286–305.
Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S. L.
(2002). Analysis of Longitudinal Data. Oxford Uni-
versity Press, 2nd edition.
Donders, A. R. T., van der Heijden, G. J. M. G., Stijnen,
T., and Moons, K. G. M. (2006). Review: A gentle
introduction to imputation of missing values. Journal
of Clinical Epidemiology, 59(10):1087–1091.
Engels, J. M. and Diehr, P. (2003). Imputation of missing
longitudinal data: A comparison of methods. Journal
of Clinical Epidemiology, 56(10):968–976.
Fortuin, V., Baranchuk, D., R
¨
atsch, G., and Mandt, S.
(2020). Gp-vae: Deep probabilistic time series im-
putation. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS), volume 108, pages 1651–1661.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
htari, A., and Rubin, D. B. (2013). Bayesian Data
Analysis. Chapman and Hall/CRC, 3rd edition.
Gianfrancesco, M.-A., Tamang, S.-T., Yazdany, J.-Y., and
Schmajuk, G. (2018). Potential biases in machine
learning algorithms using electronic health record
data. JAMA Internal Medicine, 178(11):1544–1547.
Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Steb-
bins, W., Counsell, M., Michele, P. D., Holloway,
J. L., and Moore, A. (2008). Movement disorder
society-sponsored revision of the unified parkinson’s
disease rating scale (mds-updrs): Scale presentation
and clinimetric testing results. Movement Disorders,
23(15):2129–2170.
Graham, J. W. (2009). Missing data analysis: Making it
work in the real world. Annual Review of Psychology,
60:549–576.
Hani, M., Betrouni, N., Ouardirhi, F. Z., Mahmoudi, S., and
Benjelloun, M. (2025). Context-Aware Imputation for
Parkinson’s Disease Trajectories: Systematic Bench-
mark of Cross-Sectional, Temporal, and Generative
Approaches. In Proceedings of the Delta Conference.
Accepted.
Harvey, A. C. (1989). Forecasting, Structural Time Series
Models and the Kalman Filter. Cambridge University
Press.
Jarrett, D., Yoon, J., Bica, I., Zhang, Z., Horvitz, A., and
van der Schaar, M. (2022). Hyperimpute: Gener-
alized iterative imputation with automatic model se-
lection. In Proceedings of the International Con-
ference on Machine Learning (ICML), volume 162,
pages 10042–10063.
Jordon, J., Yoon, J., and van der Schaar, M. (2019). Pate-
gan: Generating synthetic data with differential pri-
vacy guarantees. In Proceedings of the International
Conference on Learning Representations (ICLR).
Kang, J.-H., Irwin, R.-A., Chen, M.-A., and Xie, K.-B.
(2013). Csf biomarkers associated with disease het-
erogeneity in early parkinson’s disease: The parkin-
son’s progression markers initiative study. Acta Neu-
ropathologica, 126(5):671–689.
Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR).
Laird, N. M. and Ware, J. H. (1982). Random-effects mod-
els for longitudinal data. Biometrics, 38(4):963–974.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).
Federated learning: Challenges, methods, and future
directions. Proceedings of Machine Learning and Sys-
tems, 2:429–450.
Li, X., Wang, Y., and Zhang, Z. (2024). A novel missforest-
based missing values imputation approach with fea-
ture selection for medical datasets. Frontiers in Com-
putational Neuroscience, 18:123456.
Little, R. J. A. and Rubin, D. B. (2019). Statistical Analysis
with Missing Data. John Wiley & Sons, 3rd edition.
Luo, Y. (2022). Evaluating the state of the art in missing
data imputation for clinical data. Briefings in Bioin-
formatics, 23(2):bbab489.
Marek, K. et al. (2018). The parkinson’s progression mark-
ers initiative (ppmi) – establishing a pd biomarker co-
hort. Movement Disorders, 33(1):1–15.
Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner,
C., Eberly, S., Marras, K., Dean, D., and Reich, S.
(2011). The parkinson’s progression markers initiative
(ppmi). Progress in Neurobiology, 95(4):629–635.
Mattei, P.-A. and Frellsen, J. (2019). Miwae: Deep genera-
tive modeling and imputation of incomplete data sets.
In Proceedings of the International Conference on
Machine Learning (ICML), volume 97, pages 4413–
4423.
Molenberghs, G. and Kenward, M. G. (2007). Missing Data
in Clinical Studies. John Wiley & Sons.
Moor, M., Horn, M., Rieck, B., Roqueiro, D., and Borg-
wardt, K. (2020). Early recognition of sepsis with
gaussian process temporal convolutional networks and
dynamic time warping. In Proceedings of the Ma-
chine Learning for Healthcare Conference (MLHC),
volume 126, pages 2–26.
Nasreddine, Z. S., Phillips, V., Bedirian, H., Charbon-
neau, S., Whitehead, V., Collin, I., and Cummings,
J.-L. (2005). The montreal cognitive assessment,
moca: A brief screening tool for mild cognitive im-
pairment. Journal of the American Geriatrics Society,
53(4):695–699.
Pearl, J. (2009). Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press, 2nd edition.
Postuma, R., Berg, D., Stern, M., and Poewe, W. (2015).
Mds clinical diagnostic criteria for parkinson’s dis-
ease. Movement Disorders, 30(12):1591–1601.
Shah, A., Bartlett, J., Carpenter, J., Nicholas, O., and Hem-
ingway, H. (2013). Comparison of imputation meth-
ods for missing laboratory data in medicine. BMJ
Open, 3(8):e002847.
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
258