
2022 13th International Conference on Information
and Communication Systems (ICICS), pages 281–288.
Hammad, M., Chelloug, S. A., Alkanhel, R., Prakash,
A. J., Muthanna, A., Elgendy, I. A., and Pławiak, P.
(2022). Automated detection of myocardial infarction
and heart conduction disorders based on feature selec-
tion and a deep learning model. Sensors, 22(17).
Hasani, R., Lechner, M., Amini, A., Rus, D., and Grosu, R.
(2020). Liquid time-constant networks. arXiv, 4.
Joloudari, J. H., Mojrian, S., Nodehi, I., Mashmool, A.,
Zadegan, Z. K., Shirkharkolaie, S. K., Alizadehsani,
R., Tamadon, T., Khosravi, S., Kohnehshari, M. A.,
Hassannatajjeloudari, E., Sharifrazi, D., Mosavi, A.,
Loh, H. W., Tan, R.-S., and Acharya, U. R. (2022).
Application of artificial intelligence techniques for au-
tomated detection of myocardial infarction: a review.
Physiological Measurement, 43(8):08TR01.
Knof, H., Bagave, P., Boerger, M., Tcholtchev, N., and
Ding, A. Y. (2024a). Exploring cnn and xai-based ap-
proaches for accountable mi detection in the context
of iot-enabled emergency communication systems. In
Proceedings of the 13th International Conference on
the Internet of Things, IoT ’23, page 50–57, New
York, NY, USA. Association for Computing Machin-
ery.
Knof, H., Boerger, M., and Tcholtchev, N. (2024b). Quanti-
tative evaluation of xai methods for multivariate time
series - a case study for a cnn-based mi detection
model. In Longo, L., Lapuschkin, S., and Seifert,
C., editors, Explainable Artificial Intelligence, pages
169–190, Cham. Springer Nature Switzerland.
Krawczyk, B. (2016). Learning from imbalanced data: open
challenges and future directions. Progress in Artificial
Intelligence, 5:221–232.
Lynn, H. M., Pan, S. B., and Kim, P. (2019). A deep bidi-
rectional gru network model for biometric electrocar-
diogram classification based on recurrent neural net-
works. IEEE Access, 7:145395–145405.
Mohammadi Foumani, N., Miller, L., Tan, C. W., Webb,
G. I., Forestier, G., and Salehi, M. (2024). Deep
learning for time series classification and extrinsic re-
gression: A current survey. ACM Computing Surveys,
56(9):1–45.
Muhuri, P. S., Chatterjee, P., Yuan, X., Roy, K., and Ester-
line, A. (2020). Using a long short-term memory re-
current neural network (lstm-rnn) to classify network
attacks. Information, 11(5).
Naseri, H. and Homaeinezhad, M. R. (2012). Comput-
erized quality assessment of phonocardiogram signal
measurement-acquisition parameters. Journal of Med-
ical Engineering & Technology, 36(6):308–318.
Pałczy
´
nski, K.,
´
Smigiel, S., Ledzi
´
nski, D., and Bujnowski,
B. (2022). Study of the few-shot learning for ecg clas-
sification based on the ptb-xl dataset. Sensors, 22(3).
Pan, J. and Tompkins, W. J. (1985). A real-time qrs de-
tection algorithm. IEEE Transactions on Biomedical
Engineering, BME-32(3):230–236.
Prabhakararao, E. and Dandapat, S. (2022). Multi-scale
convolutional neural network ensemble for multi-class
arrhythmia classification. IEEE Journal of Biomedical
and Health Informatics, 26(8):3802–3812.
Rai, H. M. and Chatterjee, K. (2022). Hybrid cnn-lstm deep
learning model and ensemble technique for automatic
detection of myocardial infarction using big ecg data.
Applied Intelligence, 52(5):5366–5384.
S, S. M. and Morris, F. (2002). Introduction. i-leads, rate,
rhythm, and cardiac axis. BMJ, 324(7334):415–418.
Sargolzaei, A., Faez, K., and Sargolzaei, S. (2009). A new
robust wavelet based algorithm for baseline wander-
ing cancellation in ecg signals. In 2009 IEEE Inter-
national Conference on Signal and Image Processing
Applications, pages 33–38.
Segura-Salda
˜
na, P., Britto-Bisso, F., Pacheco, D. V.,
Alvarez-Vargas, M. L., Manrique, A. L., and Nicho,
G. M. B. (2022). Automated detection of myocardial
infarction using ecg-based artificial intelligence mod-
els: a systematic review. In 2022 IEEE 16th Interna-
tional Conference on Application of Information and
Communication Technologies (AICT), pages 1–6.
Singh, S., Pandey, S. K., Pawar, U., and Janghel, R. R.
(2018). Classification of ecg arrhythmia using recur-
rent neural networks. Procedia Computer Science,
132:1290–1297.
´
Smigiel, S., Pałczy
´
nski, K., and Ledzi
´
nski, D. (2021). Deep
learning techniques in the classification of ecg sig-
nals using r-peak detection based on the ptb-xl dataset.
Sensors, 21(24).
Strodthoff, N., Wagner, P., Schaeffter, T., and Samek, W.
(2021). Deep learning for ecg analysis: Benchmarks
and insights from ptb-xl. IEEE Journal of Biomedical
and Health Informatics, 25(5):1519–1528.
Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D.,
Lunze, F. I., Samek, W., and Schaeffter, T. (2020).
Ptb-xl, a large publicly available electrocardiography
dataset. Scientific Data, 7(1).
Xiong, P., Lee, S. M.-Y., and Chan, G. (2022). Deep learn-
ing for detecting and locating myocardial infarction
by electrocardiogram: A literature review. Frontiers
in Cardiovascular Medicine, 9.
´
Smigiel, S., Pałczy
´
nski, K., and Ledzi
´
nski, D. (2021). Ecg
signal classification using deep learning techniques
based on the ptb-xl dataset. Entropy, 23(9):1121.
Leveraging Liquid Time-Constant Neural Networks for ECG Classification: A Focus on Pre-Processing Techniques
245