A first exemplary aggregated demand forecast over
52 weeks for a reference article (Figure 3) shows that
the spread of the confidence intervals increases with
increasing forecast horizon. In this case, the base
model slightly underestimates demand, but the actual
values are predominantly within the 90 % confidence
interval (without applying temperature scaling).
Figure 3: Exemplary aggregated demand forecast over 52
weeks.
The completion of the process chain includes a
systematic analysis and optimization of model
architectures and hyperparameters in order to further
increase the prediction quality. Future work will
address the adaptation of the process chain to the
prediction of procurement times, the integration of
explainable AI methods to increase traceability and
the extension to correlated demand patterns in global
supply chains using copula models. The presented
AI-based process chain makes the central advantages
of AI usable for SME in procurement scheduling by
enabling risk-conscious, efficient and transparent
scheduling, which both reduces storage costs and
sustainably increases delivery reliability.
REFERENCES
Afroogh, S., Akbari, A., Malone, E., Kargar, M., &
Alambeigi, H. (2024). Trust in AI: Progress, challenges,
and future directions. Humanities and Social Sciences
Communications, 11(1), 1–30. https://doi.org/10.1057/
s41599-024-04044-8
Allal-Chérif, O., Simón-Moya, V., & Ballester, A. C. C.
(2021). Intelligent purchasing: How artificial
intelligence can redefine the purchasing function.
Journal of Business Research, 124, 69–76.
https://doi.org/10.1016/j.jbusres.2020.11.050
Amirkolaii, K. N., Baboli, A., Shahzad, M. K., &
Tonadre, R. (2017). Demand Forecasting for Irregular
Demands in Business Aircraft Spare Parts Supply
Chains by using Artificial Intelligence (AI). IFAC-
PapersOnLine, 50(1), 15221–15226. https://doi.org/10.
1016/j.ifacol.2017.08.2371
Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019).
Supply chain risk management and artificial
intelligence: state of the art and future research
directions. International Journal of Production
Research, 57(7), 2179–2202. https://doi.org/10.10
80/00207543.2018.1530476
Bitkom e. V. (2022). KI gilt in der deutschen Wirtschaft als
Zukunftstechnologie – wird aber selten genutzt
[Retrieved March 29, 2025].
Business Forecast Systems, Inc. (2025). forecast pro
[Retrieved April 26, 2025]. https://www.forecas
tpro.com/
Choung, H., David, P., & Ross, A. (2023). Trust in AI and
Its Role in the Acceptance of AI Technologies.
International Journal of Human–Computer Interaction,
39(9), 1727–1739. https://doi.org/10.1080/104473
18.2022.2050543
Chuan Guo, Geoff Pleiss, Yu Sun, & Kilian Q. Weinberger
(2017). On Calibration of Modern Neural Networks.
International Conference on Machine Learning, 1321–
1330. http://proceedings.mlr.press/v70/guo17a.html
Chui, M., Hazan, E., Roberts, R., Singla, A., Kate, S.,
Sukharevsky, A., Yee, L., & Zemmel, R. (2023). The
economic potential of generative A [Retrieved March
28, 2025]. https://www.mckinsey.com/~/media
/mckinsey/business functions/mckinsey digital/our
insights/the economic potential of generative ai the next
productivity frontier/the-economic-potential-of-
generative-ai-the-next-productivity-frontier
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease
of Use, and User Acceptance of Information
Technology. MIS Quarterly, 13(3), 319. https://doi.
org/10.2307/249008
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A
density-based algorithm for discovering clusters in
large spatial databases with noise. Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining (KDD-96) (pp. 226-231).
https://cdn.aaai.org/kdd/1996/kdd96-
037.pdf?source=post_page--------------
Ferrario, A., & Loi, M. (2022). How Explainability
Contributes to Trust in AI. In 2022 ACM Conference on
Fairness, Accountability, and Transparency (pp. 1457–
1466). ACM. https://doi.org/10.1145/3531146.
3533202
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks.
Science, 313(5786), 504–507. https://doi.org/10.1126/
science.1127647
Lloyd, S. (1982). Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2), 129–137.
https://doi.org/10.1109/TIT.1982.1056489