Jabbar, H. K. (2015). Methods to avoid overfitting and
underfitting in supervised machine learning
(comparative study). University of Misan, Misan, Iraq,
and Department of Computer Science, Aligarh Muslim
University, Aligarh, India. Retrieved from https://www.
jmail.com.
Kang, D., Yisheng, L., & Chen, Y. Y. (2017). Short-term
traffic flow prediction with LSTM recurrent neural
network. IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). https://doi.
org/10.1109/ITSC2017.8317872
Kent State University Libraries. (2018). SPSS Statistics
Tutorials and Resources. Retrieved from https://
libguides.library.kent.edu/SPSS.
Keras: Deep Learning for humans. Retrieved from
https://keras.io/.
Kim, J., Oh, S., Kim, H., & Choi, W. (2023). Tutorial on
time series prediction using 1D-CNN and BiLSTM: A
case example of peak electricity demand and system
marginal price prediction. Proceedings of Engineering
Applications of AI, Article 106817. https://doi.
org/10.1016/j.engappai.2023.106817
Kohonen, T. (1972). Correlation matrix memories. IEEE
Transactions on Computers, 100(4), 353-359.
La Greca, P., & Martinico, F. (2018). Shaping the
Sustainable Urban Mobility: The Catania Case Study.
In R. Papa, R. Fistola, & C. Gargiulo (Eds.), Smart
Planning: Sustainability and Mobility in the Age of
Change (pp. 359-374). Springer.
Meiying, Q., Xiaoping, M., Jianyi, L., & Ying, W. (2011).
Time-series gas prediction model using LS-SVR within
a Bayesian framework. Mining Science and
Technology, 21(1), 153-157.
Mystakidis, A., Koukaras, P., & Tjortjis, C. (2025).
Advances in Traffic Congestion Prediction: An
Overview of Emerging Techniques and Methods. Smart
Cities, 8(1), 25. https://doi.org/10.3390/smartcities8
010025
Pandey, R., Khatri, S. K., Singh, N. K., & Verma, P. (Eds.).
(2022). Artificial intelligence and machine learning for
EDGE computing. Academic Press.
https://doi.org/10.1016/C2020-0-01569-0
Peng, Y.-L., & Lee, W.-P. (2024). Practical guidelines for
resolving the loss divergence caused by the root-mean-
squared propagation optimizer. Applied Soft
Computing, 153, 111335. https://doi.org/10.1016/
j.asoc.2022.111335
Rana, R., & Singhal, R. (2015). Chi-square test and its
application in hypothesis testing. Journal of the Practice
of Cardiovascular Sciences, 1(1), 69–71.
https://doi.org/10.4103/2395-5414.157577
Rodríguez, P., Bautista, M. A., Gonzàlez, J., & Escalera, S.
(2018). Beyond one-hot encoding: Lower dimensional
target embedding. Image and Vision Computing, 75,
21-31. https://doi.org/10.1016/j.imavis.2018.04.002
scikit-learn: Machine Learning in Python. Retrieved from
https://scikit-learn.org/stable/index.html.
Sedgwick, P. (2012). Pearson’s correlation coefficient.
BMJ, 345, e4483. https://doi.org/10.1136/bmj.e4483
TensorFlow: An end-to-end platform for machine learning.
Retrieved from https://www.tensorflow.org/.
Tato, A., & Nkambou, R. (2018). Improving Adam
optimizer. Workshop track - ICLR 2018, Department of
Computer Science, Université du Québec à Montréal,
Montréal, Quebec, Canada.
TomTom Move. Retrieved from https://move.tom
tom.com/.
Torrisi, V., Ignaccolo, M., & Inturri, G. (2018). Innovative
Transport Systems to Promote Sustainable Mobility:
Developing the Model Architecture of a Traffic Control
and Supervisor System. In Proceedings of
Computational Science and Its Applications–ICCSA
2018: 18th International Conference (pp. 622-637).
Springer.
Tu, Y., Lin, S., Qiao, J., et al. (2021). Deep traffic
congestion prediction model based on road segment
grouping. Applied Intelligence, 51, 8519–8541.
https://doi.org/10.1007/s10489-020-02152-x
Vázquez, J. J., Arjona, J., Linares, M. P., & Casanovas-
Garcia, J. (2020). A Comparison of Deep Learning
Methods for Urban Traffic Forecasting using Floating
Car Data. Transportation Research Procedia, 47, 195-
202. https://doi.org/10.1016/j.trpro.2020.03.079
Wang, Y., Ke, S., An, C., Lu, Z., & Xia, J. (2024). A Hybrid
Framework Combining LSTM NN and BNN for Short-
term Traffic Flow Prediction and Uncertainty
Quantification. KSCE Journal of Civil Engineering, 28
(1),363-374. https://doi.org/10.1007/s12205-023-2457-y
Wang, J.-D., Noto Susanto, C. O., & Oktomy, C. (2023).
Traffic Flow Prediction with Heterogeneous Data Using
a Hybrid CNN-LSTM Model. Computers, Materials and
Continua, 76(3), 3097-3112. https://doi.org/10.32604/
cmc.2023.040914
Wu, H., & Gu, X. (2015). Towards dropout training for
convolutional neural networks. Neural Networks, 71, 1–
10. https://doi.org/10.1016/j.neunet.2015.07.003
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of
recurrent neural networks: LSTM cells and network
architectures. Neural Computation, 31(7), 1235–1270.
https://doi.org/10.1162/neco_a_01199