
ACKNOWLEDGMENTS
This work was partially funded by Lenovo as part of
its R&D investment under the Information Technol-
ogy Law. The authors would like to thank LSBD/UFC
for the partial funding of this research.
REFERENCES
Arunkumar, P. and Jadhav, A. (2024). Predicting virality of
tweets using ml algorithms and analyzing key deter-
minants of viral tweets. In Sharma, H., Chakravorty,
A., Hussain, S., and Kumari, R., editors, Artificial In-
telligence: Theory and Applications, pages 155–165,
Singapore. Springer Nature Singapore.
Cabral, L., Monteiro, J. M., da Silva, J. W. F., Mattos, C.
L. C., and Mourao, P. J. C. (2021). Fakewhastapp.
br: Nlp and machine learning techniques for misin-
formation detection in brazilian portuguese whatsapp
messages. In ICEIS (1), pages 63–74.
Dargahi Nobari, A., Sarraf, M. H. K. M., Neshati, M., and
Erfanian Daneshvar, F. (2021). Characteristics of viral
messages on telegram; the world’s largest hybrid pub-
lic and private messenger. Expert Systems with Appli-
cations, 168:114303.
de S
´
a, I. C., Galic, L., Franco, W., Gadelha, T., Monteiro,
J. M., and Machado, J. C. (2023). BATMAN: A big
data platform for misinformation monitoring. In Fil-
ipe, J., Smialek, M., Brodsky, A., and Hammoudi, S.,
editors, Proceedings of the 25th International Confer-
ence on Enterprise Information Systems, ICEIS 2023,
Volume 1, Prague, Czech Republic, April 24-26, 2023,
pages 237–246. SCITEPRESS.
de S
´
a, I. C., Monteiro, J. M., da Silva, J. W. F., Medeiros,
L. M., Mour
˜
ao, P. J. C., and da Cunha, L. C. C.
(2021). Digital lighthouse: A platform for monitor-
ing public groups in whatsapp. In Filipe, J., Smi-
alek, M., Brodsky, A., and Hammoudi, S., editors,
Proceedings of the 23rd International Conference on
Enterprise Information Systems, ICEIS 2021, Online
Streaming, April 26-28, 2021, Volume 1, pages 297–
304. SCITEPRESS.
Elmas, T., Stephane, S., and Houssiaux, C. (2023). Measur-
ing and detecting virality on social media: The case
of twitter’s viral tweets topic. In Companion Proceed-
ings of the ACM Web Conference 2023, WWW ’23
Companion, page 314–317, New York, NY, USA. As-
sociation for Computing Machinery.
Esteban-Bravo, M., d. l. M. Jim
´
enez-Rubido, L., and Vidal-
Sanz, J. M. (2024). Predicting the virality of fake news
at the early stage of dissemination. Expert Systems
with Applications, 248:123390.
Haber, J., Kawintiranon, K., Singh, L., Chen, A., Pizzo,
A., Pogrebivsky, A., and Yang, J. (2023). Identify-
ing high-quality training data for misinformation de-
tection. In Gusikhin, O., Hammoudi, S., and Cuz-
zocrea, A., editors, Proceedings of the 12th Interna-
tional Conference on Data Science, Technology and
Applications, DATA 2023, Rome, Italy, July 11-13,
2023, pages 64–76. SCITEPRESS.
Kim, J. W. (2018). Rumor has it: The effects of virality met-
rics on rumor believability and transmission on twitter.
New Media & Society, 20(12):4807–4825.
Liu, Y., Garimella, K., and Rahimian, M. A. (2024). Virality
of information diffusion on whatsapp.
Maarouf, A., Pr
¨
ollochs, N., and Feuerriegel, S. (2024). The
virality of hate speech on social media. Proc. ACM
Hum.-Comput. Interact., 8(CSCW1).
Martins, A. D. F., Cabral, L., Mour
˜
ao, P. J. C., Mon-
teiro, J. M., and Machado, J. C. (2021a). Detection
of misinformation about COVID-19 in brazilian por-
tuguese whatsapp messages. In M
´
etais, E., Meziane,
F., Horacek, H., and Kapetanios, E., editors, Natu-
ral Language Processing and Information Systems -
26th International Conference on Applications of Nat-
ural Language to Information Systems, NLDB 2021,
Saarbr
¨
ucken, Germany, June 23-25, 2021, Proceed-
ings, volume 12801 of Lecture Notes in Computer Sci-
ence, pages 199–206. Springer.
Martins, A. D. F., Cabral, L., Mour
˜
ao, P. J. C., Monteiro,
J. M., and Machado, J. C. (2021b). Detection of mis-
information about COVID-19 in brazilian portuguese
whatsapp messages using deep learning. In Proceed-
ings of the 36th Brazilian Symposium on Databases,
SBBD 2021, Rio de Janeiro, Brazil (Online), October
4-8, 2021, pages 85–96. SBC.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rameez, R., Rahmani, H. A., and Yilmaz, E. (2022). Viral-
bert: A user focused bert-based approach to virality
prediction. In Adjunct Proceedings of the 30th ACM
Conference on User Modeling, Adaptation and Per-
sonalization, UMAP ’22 Adjunct, page 85–89, New
York, NY, USA. Association for Computing Machin-
ery.
Resende, G., Melo, P. H. C., Sousa, J. M. A.,
and Benevenuto, F. (2019). Analyzing textual
(mis)information shared in whatsapp groups. In Pro-
ceedings of the 10th ACM Conference on Web Science,
pages 225–234. ACM.
Rubin, V. L., Chen, Y., and Conroy, N. K. (2015). Deception
detection for news: three types of fakes. Proceedings
of the Association for Information Science and Tech-
nology, 52(1):1–4.
Wohlin, C., Runeson, P., H
¨
ost, M., Ohlsson, M. C., Reg-
nell, B., and Wessl
´
en, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.
Zhang, X. and Gao, W. (2024). Predicting viral rumors and
vulnerable users with graph-based neural multi-task
learning for infodemic surveillance. Information Pro-
cessing & Management, 61(1):103520.
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
692