bicyclist road traffic injuries. Transportation
Engineering, 12, 100179. https://doi.org/10.1016/j.
treng.2023.100179
Breiman, L. (2001). Random Forests. Machine Learning,
45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brito, B., Costa, D. G., and Silva, I. (2024). Geospatial Risk
Assessment of Cyclist Accidents in Urban Areas: A K-
means Clustering Approach. 2024 IEEE 22nd
Mediterranean Electrotechnical Conf. (MELECON),
744–749. https://doi.org/10.1109/MELECON56669.2
024.10608791
Chen, T., and Guestrin, C. (2016). XGBoost: A Scalable Tree
Boosting System. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 785–794. https://doi.org
/10.1145/2939672.2939785
Data.europa.eu. (2024). Road Traffic Accidents in Germany.
https://data.europa.eu/data/datasets/f433e6d0-840b-4bfe
-bdc9-ba86f4245781?locale=en&utm_source=chatgpt.
com
Ding, H., Wang, R., Chen, T., Sze, N. N., Chung, H., and
Dong, N. (2024). A hybrid approach for modeling
bicycle crash frequencies: Integrating random forest
based SHAP model with random parameter negative
binomial regression model. Accident Analysis &
Prevention, 208, 107778. https://doi.org/10.1016/j.
aap.2024.107778
Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5), 1189–1232. https://doi.org/10.1214/aos/1013
203451
Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely
randomized trees. Machine Learning, 63(1), 3–42.
https://doi.org/10.1007/s10994-006-6226-1
Imbalanced-learn documentation. (2024). https://imbalanc
ed-learn.org/stable/
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. Advances in
Neural Information Processing Systems, 30. https://pa
pers.nips.cc/paper_files/paper/2017/hash/6449f44a102f
de848669bdd9eb6b76fa-Abstract.html
Lehmann, M., Mair, D., and Guehring, G. (2022). Danger
Detection for Cyclists with Machine Learning (In The
City Of Copenhagen). International Journal for Traffic
and Transport Engineering (IJTTE), 12, 272–290.
https://doi.org/10.7708/ijtte2022.12(2).09
Lu, W., Liu, J., Fu, X., Yang, J., and Jones, S. (2022).
Integrating machine learning into path analysis for
quantifying behavioral pathways in bicycle-motor
vehicle crashes. Accident; Analysis and Prevention, 168,
106622. https://doi.org/10.1016/j.aap.2022.106622
OSMnx documentation. (2024). https://osmnx.readthedocs
.io/en/stable/
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., and
Cournapeau, D. (2011). Scikit-learn: Machine Learning
in Python. Scikit-Learn: Machine Learning in Python.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.
V., and Gulin, A. (2019). CatBoost: Unbiased boosting
with categorical features (arXiv:1706.09516). arXiv.
https://doi.org/10.48550/arXiv.1706.09516
Rainio, O., Teuho, J., and Klén, R. (2024). Evaluation
metrics and statistical tests for machine learning.
Scientific Reports, 14(1), 6086. https://doi.org/10.1038
/s41598-024-56706-x
Reynolds, C. C., Harris, M. A., Teschke, K., Cripton, P. A.,
and Winters, M. (2009). The impact of transportation
infrastructure on bicycling injuries and crashes: A
review of the literature. Environmental Health, 8, 47.
https://doi.org/10.1186/1476-069X-8-47
Schnee, J., Stegmaier, J., and Li, P. (2021). A probabilistic
approach to online classification of bicycle crashes.
Accident Analysis & Prevention, 160, 106311.
https://doi.org/10.1016/j.aap.2021.106311
Silva, P. B., Andrade, M., and Ferreira, S. (2020). Machine
learning applied to road safety modeling: A systematic
literature review. Journal of Traffic and Transportation
Engineering (English Edition), 7(6), 775–790. https://
doi.org/10.1016/j.jtte.2020.07.004
Tabei, F., Askarian, B., and Chong, J. W. (2021). Accident
Detection System for Bicycle Riders. IEEE Sensors
Journal, 21(2), 878–885. IEEE Sensors Journal.
https://doi.org/10.1109/JSEN.2020.3021652
Wang, C., Kou, S., and Song, Y. (2019). Identify Risk
Pattern of E-Bike Riders in China Based on Machine
Learning Framework. Entropy, 21(11), Article 11.
https://doi.org/10.3390/e21111084
Zhu, S. (2021). Analysis of the severity of vehicle-bicycle
crashes with data mining techniques. Journal of Safety
Research, 76, 218–227. https://doi.org/10.1016/j.
jsr.2020.11.011