REFERENCES
Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019).
Machine learning interpretability: A survey on methods
and metrics. Electronics, 8(8), 832.
Cheok, J. H., Lee, K. O., Aparow, V. R., Amer, N., Peter,
C., & Magaswaran, K. (2023). Validation of scenario-
based virtual safety testing using low-cost sensor-based
instrumented vehicle. Journal of Mechanical
Engineering and Sciences, 9520-9541.
Diehm, G., Maier, S., Flad, M., & Hohmann, S. (2013).
Online identification of individual driver steering
behaviour and experimental results. 2013 ieee
international conference on systems, man, and
cybernetics,
Frazier, P. I. (2018). Bayesian optimization. In Recent
advances in optimization and modeling of
contemporary problems (pp. 255-278). Informs.
Grรคber, T., Lupberger, S., Unterreiner, M., & Schramm, D.
(2018). A hybrid approach to side-slip angle estimation
with recurrent neural networks and kinematic vehicle
models. IEEE Transactions on Intelligent Vehicles,
4(1), 39-47.
Kim, D., Kim, G., Choi, S., & Huh, K. (2021). An
integrated deep ensemble-unscented Kalman filter for
sideslip angle estimation with sensor filtering network.
IEEE Access, 9, 149681-149689.
Li, W., Zhang, J., Ringbeck, F., Jรถst, D., Zhang, L., Wei,
Z., & Sauer, D. U. (2021). Physics-informed neural
networks for electrode-level state estimation in lithium-
ion batteries. Journal of Power Sources, 506, 230034.
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S.
(2020). Explainable ai: A review of machine learning
interpretability methods. Entropy, 23(1), 18.
Molnar, C. (2020). Interpretable machine learning. Lulu.
com.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why
should i trust you?" Explaining the predictions of any
classifier. Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining,
Schramm, D., Hiller, M., & Bardini, R. (2018). Vehicle
dynamics. Modeling and Simulation. Berlin,
Heidelberg, 2nd Edition.
Sieberg, P. M., Blume, S., Harnack, N., Maas, N., &
Schramm, D. (2019). Hybrid state estimation
combining artificial neural network and physical
model. 2019 IEEE Intelligent Transportation Systems
Conference (ITSC),
Smuha, N. A. (2025). Regulation 2024/1689 of the Eur.
Parl. & Council of June 13, 2024 (Eu Artificial
Intelligence Act). International Legal Materials, 1-148.
Standardization, I. O. f. (2018). ISO 3888 โ 1: 2018
Passenger carsโTest track for a severe laneโchange
manoeuvreโPart 1: Double laneโchange. In.
Wu, M., Wang, Y., Zhang, Y., & Li, Z. (2024). Physics-
Informed Neural Network for Mining Truck
Suspension Parameters Identification. Advanced
Vehicle Control Symposium,
Zhang, Y., Huang, Y., Deng, K., Shi, B., Wang, X., Li, L.,
& Song, J. (2024). Vehicle Dynamics Estimator
Utilizing LSTM-Ensembled Adaptive Kalman Filter.
IEEE Transactions on Industrial Electronics.
Zhang, Y., Tiลo, P., Leonardis, A., & Tang, K. (2021). A
survey on neural network interpretability. IEEE
Transactions on Emerging Topics in Computational
Intelligence, 5(5), 726-742.