Bhatt, S., Ghazanfar, M., and Amirhosseini, M. (2023).
Sentiment-Driven Cryptocurrency Price Prediction: A
Machine Learning Approach Utilizing Historical Data
and Social Media Sentiment Analysis. Machine
Learning and Applications: An International Journal
(MLAIJ), 10(2/3), 1–15.
Bhavitha, B.K., Rodrigues, A.P. and Chiplunkar, N.N.
(2017). Comparative study of machine learning
techniques in sentimental analysis. In 2017
International Conf. on Inventive Communication and
Computational Technologies, pp. 216–221.
Bonta, V. and Janardhan, N.K.N. (2019). A comprehensive
study on lexicon based approaches for sentiment
analysis. Asian Journal of Computer Science and
Technology, 8(S2), pp.1–6.
Chaturvedi, I., Cambria, E., Welsch, R.E. and Herrera, F.
(2018). Distinguishing between facts and opinions for
sentiment analysis: survey and challenges. Information
Fusion, 44, pp.65–77.
Chekima, K., Alfred, R. and Chin, K.O. (2017). Rule-based
model for Malay text sentiment analysis. In
International Conference on Computational Science
and Technology (pp. 172–185).
Dang, N.C., Moreno-García, M.N. and De la Prieta, F.
(2020). Sentiment analysis based on deep learning: a
comparative study. Electronics, 9(3), p.483.
Dehghani, M., Johnson, K.M., Garten, J., Boghrati, R.,
Hoover, J., Balasubramanian, V., Singh, A., Shankar,
Y., Pulickal, L., Rajkumar, A. and Parmar, N.J. (2017).
TACIT: an open-source text analysis, crawling, and
interpretation tool. Behavior Research Methods, 49(2),
pp.538–547.
Dwivedi, R.K., Aggarwal, M., Keshari, S.K. and Kumar, A.
(2019). Sentiment analysis and feature extraction using
rule-based model (RBM). In International Conf. on
Innovative Computing and Communications (pp. 57–63).
Gupta, A., Joshi, R., & Jain, S. (2022). Emotion detection
in text: A review. ACM Computing Surveys, 55(1), 1–38.
Hartmann, J. (2022). j-hartmann/emotion-english-distilro
berta-base [Model]. HuggingFace. Available at:
https://huggingface.co/j-hartmann/emotion-english-
distilroberta-base
Hasan, A., Moin, S., Karim, A. and Shamshirband, S.
(2018). Machine learning-based sentiment analysis for
Twitter accounts. Mathematical and Computational
Applications, 23(1), p.11.
Huq, M.R., Ahmad, A. and Rahman, A. (2017). Sentiment
analysis on Twitter data using KNN and SVM.
International Journal of Advanced Computer Science
and Applications, 8(6).
Hussein, D.M.E.D.M. (2018). A survey on sentiment
analysis challenges. Journal of King Saud University -
Engineering Sciences, 30(4), pp.330–338.
Jagdale, R.S., Shirsat, V.S. and Deshmukh, S.N. (2019).
Sentiment analysis on product reviews using machine
learning techniques. In Cognitive Informatics and Soft
Computing (pp. 639–647).
Khoo, C.S. and Johnkhan, S.B. (2018). Lexicon-based
sentiment analysis: comparative evaluation of six
sentiment lexicons. Journal of Information Science
,
44(4), pp.491–511.
Liao, S., Wang, J., Yu, R., Sato, K. and Cheng, Z. (2017).
CNN for situations understanding based on sentiment
analysis of Twitter data. Procedia Computer Science,
111, pp.376–381.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ...
& Stoyanov, V. (2019). RoBERTa: A robustly
optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing
a word–emotion association lexicon. Computational
Intelligence, 29(3), 436–465.
Mohammad, S.M. (2017). Challenges in sentiment
analysis. In A Practical Guide to Sentiment Analysis
(pp. 61–83). Springer, Cham.
Mostafa, M.M. (2019). Clustering halal food consumers: a
Twitter sentiment analysis. International Journal of
Market Research, 61(3), pp.320–337.
Ray, P. and Chakrabarti, A. (2020). A mixed approach of
deep learning method and rule-based method to
improve aspect level sentiment analysis. Applied
Computing and Informatics.
Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment
analysis from Twitter text. Journal of Computational
Science, 36, 101003.
Stine, R.A. (2019). Sentiment analysis. Annual Review of
Statistics and Its Application, 6, pp.287–308.
Vashishtha, S. and Susan, S. (2019). Fuzzy rule based
unsupervised sentiment analysis from social media
posts. Expert Systems with Applications, 138, p.112834.
Wang, Y., Kim, K., Lee, B. and Youn, H.Y. (2018). Word
clustering based on POS feature for efficient Twitter
sentiment analysis. Human-Centric Computing and
Information Sciences, 8(1), pp.1–25.
Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017).
Current state of text sentiment analysis from opinion to
emotion mining. ACM Computing Surveys (CSUR),
50(2), 1–33.
Zhang, L., Wang, S. and Liu, B. (2018). Deep learning for
sentiment analysis: a survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 8(4),
p.e1253.
Zimmer, M. and Proferes, N.J. (2014). A topology of
Twitter research: disciplines, methods, and ethics.