
port, Department of Computer Science, University of
Arizona.
Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M.,
Deng, S. K., Clement, C. B., Drain, D., Sundaresan,
N., Yin, J., Jiang, D., and Zhou, M. (2021). Graph-
codebert: Pre-training code representations with data
flow. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.
Inoue, K. and Roy, C. K., editors (2021). Code Clone Anal-
ysis. Springer Singapore.
Krinke, J. and Ragkhitwetsagul, C. (2022). Bigclonebench
considered harmful for machine learning. In 16th
IEEE International Workshop on Software Clones,
IWSC 2022, Limassol, Cyprus, October 2, 2022,
pages 1–7. IEEE.
Nakagawa, T., Higo, Y., and Kusumoto, S. (2021). NIL:
large-scale detection of large-variance clones. In
Spinellis, D., Gousios, G., Chechik, M., and Penta,
M. D., editors, ESEC/FSE ’21: 29th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, pages 830–841.
ACM.
Ostryanin, E. (2024). Evaluierung von klonerkennungsver-
fahren f
¨
ur java-quellcode unter verwendung von
cloreco. Bachelor’s thesis, Faculty of Mathematics
and Computer Science, Friedrich Schiller University
Jena.
Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi,
G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M. R.,
Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S.,
Finkler, U., Malaika, S., and Reiss, F. (2021). Co-
denet: A large-scale AI for code dataset for learn-
ing a diversity of coding tasks. In Vanschoren, J.
and Yeung, S., editors, Proceedings of the Neural In-
formation Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual.
Roy, C. K. and Cordy, J. R. (2008). NICAD: accurate de-
tection of near-miss intentional clones using flexible
pretty-printing and code normalization. In Krikhaar,
R. L., L
¨
ammel, R., and Verhoef, C., editors, The 16th
IEEE International Conference on Program Compre-
hension, ICPC 2008, Amsterdam, The Netherlands,
June 10-13, 2008, pages 172–181. IEEE Computer
Society.
Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Compari-
son and evaluation of code clone detection techniques
and tools: A qualitative approach. Sci. Comput. Pro-
gram., 74(7):470–495.
Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P., and
Lopes, C. V. (2018). Oreo: detection of clones in
the twilight zone. In Leavens, G. T., Garcia, A., and
Pasareanu, C. S., editors, Proceedings of the 2018
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 354–365. ACM.
Saini, V., Sajnani, H., Kim, J., and Lopes, C. V. (2016).
Sourcerercc and sourcerercc-i: tools to detect clones
in batch mode and during software development. In
Dillon, L. K., Visser, W., and Williams, L. A., editors,
Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016 - Companion Volume, pages 597–
600. ACM.
Sch
¨
afer, A., Amme, W., and Heinze, T. S. (2020). Detection
of similar functions through the use of dominator in-
formation. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems,
ACSOS 2020, Companion Volume, Washington, DC,
USA, August 17-21, 2020, pages 206–211. IEEE.
Sch
¨
afer, A., Amme, W., and Heinze, T. S. (2022). Exper-
iments on code clone detection and machine learn-
ing. In 16th IEEE International Workshop on Soft-
ware Clones, IWSC 2022, Limassol, Cyprus, October
2, 2022, pages 46–52. IEEE.
Sonnekalb, T., Gruner, B., Brust, C., and M
¨
ader, P. (2022).
Generalizability of code clone detection on codebert.
In 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022, pages 143:1–143:3.
ACM.
Svajlenko, J. and Roy, C. K. (2015). Evaluating clone detec-
tion tools with bigclonebench. In Koschke, R., Krinke,
J., and Robillard, M. P., editors, 2015 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution, ICSME 2015, Bremen, Germany, September 29
- October 1, 2015, pages 131–140. IEEE Computer
Society.
Svajlenko, J. and Roy, C. K. (2016). Bigcloneeval: A
clone detection tool evaluation framework with big-
clonebench. In 2016 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME
2016, Raleigh, NC, USA, October 2-7, 2016, pages
596–600. IEEE Computer Society.
Svajlenko, J. and Roy, C. K. (2022). Bigclonebench: A ret-
rospective and roadmap. In 16th IEEE International
Workshop on Software Clones, IWSC 2022, Limassol,
Cyprus, October 2, 2022, pages 8–9. IEEE.
Wang, P., Svajlenko, J., Wu, Y., Xu, Y., and Roy, C. K.
(2018). Ccaligner: a token based large-gap clone de-
tector. In Chaudron, M., Crnkovic, I., Chechik, M.,
and Harman, M., editors, Proceedings of the 40th
International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 1066–1077. ACM.
Wang, W., Li, G., Ma, B., Xia, X., and Jin, Z. (2020).
Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. In Kontogian-
nis, K., Khomh, F., Chatzigeorgiou, A., Fokaefs, M.,
and Zhou, M., editors, 27th IEEE International Con-
ference on Software Analysis, Evolution and Reengi-
neering, SANER 2020, London, ON, Canada, Febru-
ary 18-21, 2020, pages 261–271. IEEE.
Wei, H. and Li, M. (2017). Supervised deep features for
software functional clone detection by exploiting lex-
ical and syntactical information in source code. In
Sierra, C., editor, Proceedings of the Twenty-Sixth
ICSOFT 2025 - 20th International Conference on Software Technologies
398