REFERENCES
ACM History Committee. (2025). “ACM History,”
available at https://www.acm.org/about-acm/acm-
history, accessed on Mar 14 2025.
Adarkwah, M. A., Islam, A. Y. M. A., Schneider, K.,
Luckin, R., Thomas, M., and Spector, J. M. (2024).
“Are Preprints a Threat to the Credibility and Quality
of Artificial Intelligence Literature in the ChatGPT
Era? A Scoping Review and Qualitative Study,”
International Journal of Human–Computer Interaction,
pp. 1-14 (doi: 10.1080/10447318.2024.2364140).
Ahmed, U. (2023). “Reimagining open data ecosystems: a
practical approach using AI, CI, and knowledge graphs,”
in BIR Workshops, Ascoli Piceno, Italy. 13.09.2023 -
15.09.2023.
Ahmed, U., Alexopoulos, C., Piangerelli, M., and Polini, A.
(2024). “BRYT: Automated keyword extraction for
open datasets,” Intelligent Systems with Applications
(23), p. 200421 (doi: 10.1016/j.iswa.2024.200421).
Alexopoulos, C., Saxena, S., Janssen, M., Rizun, N.,
Lnenicka, M., and Matheus, R. (2024). “Why do Open
Government Data initiatives fail in developing
countries? A root cause analysis of the most prevalent
barriers and problems,” The Electronic Journal of
Information Systems in Developing Countries (90:2)
(doi: 10.1002/isd2.12297).
Ansari, B., Barati, M., and Martin, E. G. (2022).
“Enhancing the usability and usefulness of open
government data: A comprehensive review of the state
of open government data visualization research,”
Government Information Quarterly (39:1), p. 101657
(doi: 10.1016/j.giq.2021.101657).
Attard, J., Orlandi, F., Scerri, S., and Auer, S. (2015). “A
systematic review of open government data initiatives,”
Government Information Quarterly (32:4), pp. 399-418
(doi: 10.1016/j.giq.2015.07.006).
Barcellos, R., Bernardini, F., Zuiderwijk, A., and Viterbo,
J. (2024). “Exploring Interpretability in Open
Government Data with ChatGPT,” in Proceedings of
the 25th Annual International Conference on Digital
Government Research, H.-C. Liao, D. D. Cid, M. A.
Macadar and F. Bernardini (eds.), Taipei Taiwan.
11.06.2024 - 14.06.2024, New York, NY, USA: ACM,
pp. 186-195 (doi: 10.1145/3657054.3657079).
Barry, E., and Bannister, F. (2014). “Barriers to open data
release: A view from the top,” Information Polity
(19:1,2), pp. 129-152 (doi: 10.3233/IP-140327).
Benjira, W., Atigui, F., Bucher, B., Grim-Yefsah, M., and
Travers, N. (2025a). “Automated mapping between
SDG indicators and open data: An LLM-augmented
knowledge graph approach,” Data & Knowledge
Engineering (156), p. 102405 (doi: 10.1016/j.
datak.2024.102405).
Benjira, W., Atigui, F., Bucher, B., Grim-Yefsah, M., and
Travers, N. (2025b). “Web Open Data to SDG
Indicators: Towards an LLM-Augmented Knowledge
Graph Solution,” in Web Information Systems
Engineering – WISE 2024 PhD Symposium, Demos and
Workshops, M. Barhamgi, H. Wang, X. Wang, E.
Aïmeur, M. Mrissa, B. Chikhaoui, K. Boukadi, R. Grati
and Z. Maamar (eds.), Springer Nature Singapore, pp.
90-100 (doi: 10.1007/978-981-96-1483-7_7).
Bonina, C., and Eaton, B. (2020). “Cultivating open
government data platform ecosystems through
governance: Lessons from Buenos Aires, Mexico City
and Montevideo,” Government Information Quarterly
(37:3), p. 101479 (doi: 10.1016/j.giq.2020.101479).
Brynjolfsson, E., Li, D., and Raymond, L. (2023).
“Generative AI at Work,”
NBER Working Paper Series
31161, Cambridge, MA: National Bureau of Economic.
Carta, S., Giuliani, A., Manca, M. M., Piano, L., Pisu, A.,
and Tiddia, S. G. (2024). “Instruct Large Language
Models for Public Administration Document
Information Extraction,” in Proceedings of the Ital-IA
2024 Thematic Workshops, Naples, Italy. 29.05.2024 -
30.05.2024, pp. 424-429.
Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K.,
Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang,
Y., Chang, Y., Yu, P. S., Yang, Q., and Xie, X. (2024).
“A Survey on Evaluation of Large Language Models,”
ACM Transactions on Intelligent Systems and
Technology (15:3), pp. 1-45 (doi: 10.1145/3641289).
Cigliano, A., and Fallucchi, F. (2025). “The Convergence
of Open Data, Linked Data, Ontologies, and Large
Language Models: Enabling Next-Generation
Knowledge Systems,” in Metadata and Semantic
Research, M. Sfakakis, E. Garoufallou, M. Damigos, A.
Salaba and C. Papatheodorou (eds.), pp. 197-213 (doi:
10.1007/978-3-031-81974-2_17).
Costa, D. G., Silva, I., Medeiros, M., Bittencourt, J. C. N.,
and Andrade, M. (2024). “A method to promote safe
cycling powered by large language models and AI
agents,” MethodsX (13), p. 102880 (doi:
10.1016/j.mex.2024.102880).
Del Hoyo-Alonso, R., Rodrigalvarez-Chamarro, V., Vea-
Murgía, J., Zubizarreta, I., and Moyano-Collado, J.
(2024). “Aragón Open Data Assistant, Lesson Learned
of an Intelligent Assistant for Open Data Access,” in
Chatbot Research and Design, A. Følstad, T. Araujo, S.
Papadopoulos, E. L.-C. Law, E. Luger, M. Goodwin, S.
Hobert and P. B. Brandtzaeg (eds.), Cham: Springer
Nature, pp. 42-57 (doi: 10.1007/978-3-031-54975-5_3).
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua,
T.-S., and Li, Q. (2024). “A Survey on RAG Meeting
LLMs: Towards Retrieval-Augmented Large Language
Models,” in Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
R. Baeza-Yates and F. Bonchi (eds.), Barcelona Spain.
25.08.2024 - 29.08.2024, New York, NY, USA: ACM,
pp. 6491-6501 (doi: 10.1145/3637528.3671470).
Filippucci, F., Gal, P., Jona-Lasinio, C., Leandro, A., and
Nicoletti, G. (2024). “The impact of Artificial
Intelligence on productivity, distribution and growth:
Key mechanisms, initial evidence and policy
challenges,” OECD Artificial Intelligence Papers.
Hintsch, J., Staegemann, D., Volk, M., and Turowski, K.
(2021). “Low-code Development Platform Usage:
Towards Bringing Citizen Development and Enterprise
IT into Harmony,” in Proceedings of the 32nd