
REFERENCES
Adewole, K. S. and Torra, V. (2024). Energy disaggregation
risk resilience through microaggregation and discrete
fourier transform. Information Sciences, 662:120211.
Aggarwal, C. C. and Yu, P. S. (2004). A condensation ap-
proach to privacy preserving data mining. In Inter-
national Conference on Extending Database Technol-
ogy, pages 183–199. Springer.
Bai, L., Hu, H., Ye, Q., Li, H., Wang, L., and Xu, J. (2024).
Membership inference attacks and defenses in feder-
ated learning: A survey. ACM Computing Surveys,
57(4):1–35.
Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.
Domingo-Ferrer, J. and Mateo-Sanz, J. M. (2002). Practical
data-oriented microaggregation for statistical disclo-
sure control. IEEE Transactions on Knowledge and
data Engineering, 14(1):189–201.
Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data anal-
ysis. In Halevi, S. and Rabin, T., editors, Theory
of Cryptography, pages 265–284, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Herzen, J., L
¨
assig, F., Piazzetta, S. G., Neuer, T., Tafti,
L., Raille, G., Pottelbergh, T. V., Pasieka, M.,
Skrodzki, A., Huguenin, N., Dumonal, M., Ko
´
scisz,
J., Bader, D., Gusset, F., Benheddi, M., Williamson,
C., Kosinski, M., Petrik, M., and Grosch, G. (2022).
Darts: User-friendly modern machine learning for
time series. Journal of Machine Learning Research,
23(124):1–6.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.
Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the national academy of sciences,
79(8):2554–2558.
Kim, J., Kim, H., Kim, H., Lee, D., and Yoon, S. (2024).
A comprehensive survey of time series forecasting:
Architectural diversity and open challenges. arXiv
preprint arXiv:2411.05793.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. (2017a). Communication-Efficient
Learning of Deep Networks from Decentralized Data.
In Singh, A. and Zhu, J., editors, Proceedings of
the 20th International Conference on Artificial Intelli-
gence and Statistics, volume 54 of Proceedings of Ma-
chine Learning Research, pages 1273–1282. PMLR.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017b). Communication-efficient
learning of deep networks from decentralized data. In
Artificial intelligence and statistics, pages 1273–1282.
PMLR.
Mortazavi, R. and Jalili, S. (2014). Fast data-oriented mi-
croaggregation algorithm for large numerical datasets.
Knowledge-Based Systems, 67:195–205.
M
¨
uller, K.-R., Smola, A. J., R
¨
atsch, G., Sch
¨
olkopf, B.,
Kohlmorgen, J., and Vapnik, V. (1997). Predicting
time series with support vector machines. In Interna-
tional conference on artificial neural networks, pages
999–1004. Springer.
Nin, J. and Torra, V. (2006a). Distance based re-
identification for time series, analysis of distances.
In Privacy in Statistical Databases: CENEX-SDC
Project International Conference, PSD 2006, Rome,
Italy, December 13-15, 2006. Proceedings, pages
205–216. Springer.
Nin, J. and Torra, V. (2006b). Extending microaggregation
procedures for time series protection. In International
conference on rough sets and current trends in com-
puting, pages 899–908. Springer.
Nin, J. and Torra, V. (2009). Towards the evaluation of
time series protection methods. Information Sciences,
179(11):1663–1677.
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai,
M. Z., Barrow, D. K., Taieb, S. B., Bergmeir, C.,
Bessa, R. J., Bijak, J., Boylan, J. E., et al. (2022).
Forecasting: theory and practice. International Jour-
nal of Forecasting, 38(3):705–871.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
nature, 323(6088):533–536.
Sakuma, J. and Osame, T. (2017). Recommenda-
tion with k-anonymized ratings. arXiv preprint
arXiv:1707.03334.
Samarati, P. (2001). Protecting respondents identities in mi-
crodata release. IEEE transactions on Knowledge and
Data Engineering, 13(6):1010–1027.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. (2008). The graph neural net-
work model. IEEE transactions on neural networks,
20(1):61–80.
Shumway, R. H., Stoffer, D. S., Shumway, R. H., and Stof-
fer, D. S. (2017). Arima models. Time series analysis
and its applications: with R examples, pages 75–163.
Torra, V. and Navarro-Arribas, G. (2023). Attribute dis-
closure risk for k-anonymity: the case of numerical
data. International Journal of Information Security,
22(6):2015–2024.
Trindade, A. (2015). ElectricityLoadDiagrams20112014.
UCI Machine Learning Repository.
Ulvila, J. W. (1985). Decision trees for forecasting. Journal
of Forecasting, 4(4):377–385.
Voigt, P. and Von dem Bussche, A. (2017). The eu gen-
eral data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Pub-
lishing, 10(3152676):10–5555.
Wilson, C. S. and Commissioner, U. (2020). A defining
moment for privacy: The time is ripe for federal pri-
vacy legislation. In Speech at Future of Privacy Fo-
rum by Commissioner of US Federal Trade Commis-
sion (FTC), volume 6.
Wu, R., Chen, X., Guo, C., and Weinberger, K. Q. (2023).
Learning to invert: Simple adaptive attacks for gradi-
ent inversion in federated learning. In Uncertainty in
Artificial Intelligence, pages 2293–2303. PMLR.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
770